我有一个 JSON 文件片段,我将其规范化并使用 record_path 和其他列上的元参数,它工作正常,但当我加载整个文件时,我收到一个关键错误。下面是我为片段和完整的 json 下载文件加载编写的代码。
片段作品
import pandas as pd
data = {
"meta": {
"disclaimer": "Do not rely on openFDA to make decisions regarding medical care. While we make every effort to ensure that data is accurate, you should assume all results are unvalidated. We may limit or otherwise restrict your access to the API in line with our Terms of Service.",
"terms": "https://open.fda.gov/terms/",
"license": "https://open.fda.gov/license/",
"last_updated": "2024-11-15",
"results": {
"skip": 0,
"limit": 2,
"total": 118943
}
},
"results": [
{
"product_ndc": "73647-062",
"generic_name": "MENTHOL, CAMPHOR",
"labeler_name": "Just Brands LLC",
"brand_name": "JUST CBD - CBD AND THC ULTRA RELIEF",
"active_ingredients": [
{
"name": "CAMPHOR (SYNTHETIC)",
"strength": "2 g/100g"
},
{
"name": "MENTHOL",
"strength": "6 g/100g"
}
],
"finished": True,
"packaging": [
{
"package_ndc": "73647-062-04",
"description": "113 g in 1 BOTTLE, PUMP (73647-062-04)",
"marketing_start_date": "20230314",
"sample": False
}
],
"listing_expiration_date": "20251231",
"openfda": {
"manufacturer_name": ["Just Brands LLC"],
"spl_set_id": ["f664eb79-8897-3a49-e053-2995a90a37b4"],
"is_original_packager": [True],
"unii": ["5TJD82A1ET", "L7T10EIP3A"]
},
"marketing_category": "OTC MONOGRAPH DRUG",
"dosage_form": "GEL",
"spl_id": "16c906dd-6989-9a79-e063-6394a90afa71",
"product_type": "HUMAN OTC DRUG",
"route": ["TOPICAL"],
"marketing_start_date": "20230314",
"product_id": "73647-062_16c906dd-6989-9a79-e063-6394a90afa71",
"application_number": "M017",
"brand_name_base": "JUST CBD - CBD AND THC ULTRA RELIEF"
},
{
"product_ndc": "0591-4039",
"marketing_end_date": "20250930",
"generic_name": "CLOBETASOL PROPIONATE",
"labeler_name": "Actavis Pharma, Inc.",
"brand_name": "CLOBETASOL PROPIONATE",
"active_ingredients": [
{
"name": "CLOBETASOL PROPIONATE",
"strength": ".05 g/mL"
}
],
"finished": True,
"packaging": [
{
"package_ndc": "0591-4039-46",
"description": "1 BOTTLE in 1 CARTON (0591-4039-46) / 59 mL in 1 BOTTLE",
"marketing_start_date": "20150828",
"marketing_end_date": "20250930",
"sample": False
},
{
"package_ndc": "0591-4039-74",
"description": "1 BOTTLE in 1 CARTON (0591-4039-74) / 125 mL in 1 BOTTLE",
"marketing_start_date": "20150828",
"marketing_end_date": "20250930",
"sample": False
}
],
"openfda": {
"manufacturer_name": ["Actavis Pharma, Inc."],
"rxcui": ["861512"],
"spl_set_id": ["907e425a-720a-4180-b97c-9e25008a3658"],
"is_original_packager": [True],
"unii": ["779619577M"]
},
"marketing_category": "NDA AUTHORIZED GENERIC",
"dosage_form": "SPRAY",
"spl_id": "33a56b8b-a9a6-4287-bbf4-d68ad0c59e07",
"product_type": "HUMAN PRESCRIPTION DRUG",
"route": ["TOPICAL"],
"marketing_start_date": "20150828",
"product_id": "0591-4039_33a56b8b-a9a6-4287-bbf4-d68ad0c59e07",
"application_number": "NDA021835",
"brand_name_base": "CLOBETASOL PROPIONATE",
"pharm_class": [
"Corticosteroid Hormone Receptor Agonists [MoA]",
"Corticosteroid [EPC]"
]
}
]
}
packaging_data = pd.json_normalize(
data['results'],
record_path=["packaging"],
meta=['product_ndc', 'brand_name', 'generic_name']
)
active_ingredients_data = pd.json_normalize(
data['results'],
record_path=["active_ingredients"],
meta=['product_ndc', 'brand_name', 'generic_name']
)
combined_data = pd.merge(
packaging_data,
active_ingredients_data,
on=['product_ndc', 'brand_name', 'generic_name'],
how='outer'
)
使用元数据时,JSON 文件的完整下载和加载会出现关键错误
import pandas as pd
import json
import requests, zipfile, io, os
cwd = os.getcwd()
zip_url = 'https://download.open.fda.gov/drug/ndc/drug-ndc-0001-of-0001.json.zip'
r = requests.get(zip_url)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall(cwd)
with open('drug-ndc-0001-of-0001.json', 'r') as file:
data = json.load(file)
packaging_data = pd.json_normalize(
data['results'],
record_path=["packaging"],
meta=['product_ndc', 'brand_name', 'generic_name']
)
active_ingredients_data = pd.json_normalize(
data['results'],
record_path=["active_ingredients"],
meta=['product_ndc', 'brand_name', 'generic_name']
)
combined_data = pd.merge(
packaging_data,
active_ingredients_data,
on=['product_ndc', 'brand_name', 'generic_name'],
how='outer'
)