我正在尝试使用 manjaro linux编译来自https://github.com/pjreddie/darknet的源代码。但是当我尝试使用 CUDNN 开关时,构建出现问题。
g++ -DOPENCV -I/usr/include/opencv4/opencv2/ `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/http_stream.cpp -o obj/http_stream.o
Package opencv was not found in the pkg-config search path.
Perhaps you should add the directory containing `opencv.pc'
to the PKG_CONFIG_PATH environment variable
Package 'opencv', required by 'virtual:world', not found
./src/http_stream.cpp:46:10: fatal error: opencv2/opencv.hpp: Arquivo ou diretório inexistente
#include "opencv2/opencv.hpp"
^~~~~~~~~~~~~~~~~~~~
这是我的制作文件。
GPU=1
CUDNN=1
CUDNN_HALF=0
OPENCV=1
AVX=0
OPENMP=0
LIBSO=0
# set GPU=1 and CUDNN=1 to speedup on GPU
# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision using Tensor Cores) on GPU Tesla V100, Titan V, DGX-2
# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
DEBUG=0
ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_61,code=[sm_61,compute_61]
OS := $(shell uname)
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 � DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
VPATH=./src/
EXEC=darknet
OBJDIR=./obj/
ifeq ($(LIBSO), 1)
LIBNAMESO=darknet.so
APPNAMESO=uselib
endif
CC=gcc
CPP=g++
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON=
CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas
ifeq ($(DEBUG), 1)
OPTS= -O0 -g
else
ifeq ($(AVX), 1)
CFLAGS+= -ffp-contract=fast -mavx -msse4.1 -msse4a
endif
endif
CFLAGS+=$(OPTS)
ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV -I/usr/include/opencv4/opencv2/
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif
ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
LDFLAGS+= -lgomp
endif
ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
ifeq ($(OS),Darwin) #MAC
LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
else
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
endif
ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
ifeq ($(OS),Darwin) #MAC
CFLAGS+= -DCUDNN -I/usr/local/cuda/include
LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
else
CFLAGS+= -DCUDNN -I/usr/local/cudnn/include
LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn
endif
endif
ifeq ($(CUDNN_HALF), 1)
COMMON+= -DCUDNN_HALF
CFLAGS+= -DCUDNN_HALF
ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
endif
OBJ=http_stream.o gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o upsample_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile
all: obj backup results $(EXEC) $(LIBNAMESO) $(APPNAMESO)
ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC
$(LIBNAMESO): $(OBJS) src/yolo_v2_class.hpp src/yolo_v2_class.cpp
$(CPP) -shared -std=c++11 -fvisibility=hidden -DYOLODLL_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)
$(APPNAMESO): $(LIBNAMESO) src/yolo_v2_class.hpp src/yolo_console_dll.cpp
$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
endif
$(EXEC): $(OBJS)
$(CPP) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
$(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cpp $(DEPS)
$(CPP) $(COMMON) $(CFLAGS) -c $< -o $@
$(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results
.PHONY: clean
clean:
rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)
似乎与新的 gcc 或 opencv 版本有关,但我不对。
好的,它已解决,我会报告以防其他人偶然发现它。整个混乱是由于以下部分:
pkg-config 无法弄清楚,所以我不得不手动导出它:
然后它与这个make文件一起工作:
还与查看哪个版本的 cudnn 必须与每个版本的 cuda 一起使用相关:https ://developer.nvidia.com/rdp/cudnn-archive
因为暗网程序文件已更新。Makefile 中的“GPU=1”导致核心转储错误。我是用以前版本的 Yolo v3 编译的。
我的档案在这里。 https://drive.google.com/open?id=1Ki5wKZ25uY6KrRfebou8xicIBaGxaQxb