AskOverflow.Dev

AskOverflow.Dev Logo AskOverflow.Dev Logo

AskOverflow.Dev Navigation

  • 主页
  • 系统&网络
  • Ubuntu
  • Unix
  • DBA
  • Computer
  • Coding
  • LangChain

Mobile menu

Close
  • 主页
  • 系统&网络
    • 最新
    • 热门
    • 标签
  • Ubuntu
    • 最新
    • 热门
    • 标签
  • Unix
    • 最新
    • 标签
  • DBA
    • 最新
    • 标签
  • Computer
    • 最新
    • 标签
  • Coding
    • 最新
    • 标签
主页 / ubuntu / 问题 / 1030886
Accepted
greatfiction
greatfiction
Asked: 2018-05-02 21:27:48 +0800 CST2018-05-02 21:27:48 +0800 CST 2018-05-02 21:27:48 +0800 CST

如何使用 Coffee Lake 在 18.04 上安装 NVIDIA CUDA 工具包 - 是否支持?

  • 772

我喜欢 18.04 的安装,而且我也经常使用 blender3d。我需要 CUDA 工具包才能使用我的 GPU 而不是我的 CPU 进行渲染。

我已经读过,获得正确的工具包至关重要,否则可能会遇到一些非常糟糕的问题。只是想确认它可用于 Ubuntu 18.04。

另外,从哪里得到它并确认它是正确的?

谢谢

nvidia opencl cuda 18.04
  • 2 2 个回答
  • 29380 Views

2 个回答

  • Voted
  1. Best Answer
    Terrance
    2018-05-02T21:58:36+08:002018-05-02T21:58:36+08:00

    现在看起来好像CUDA 9.1实际上在官方 18.04 存储库中。从终端窗口运行以下命令:

    sudo apt install nvidia-cuda-toolkit  
    

    安装后运行nvcc -V确认。您应该会看到与此类似的内容:

    terrance@terrance-ubuntu:~$ nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2017 NVIDIA Corporation
    Built on Fri_Nov__3_21:07:56_CDT_2017
    Cuda compilation tools, release 9.1, V9.1.85
    

    该工具包还安装了必要的驱动程序和对OpenCL. 只需安装clinfo并运行它即可查看:

    sudo apt install clinfo
    

    然后你应该得到类似下面的东西:

    terrance@terrance-ubuntu:~$ clinfo
    Number of platforms                               1
      Platform Name                                   NVIDIA CUDA
      Platform Vendor                                 NVIDIA Corporation
      Platform Version                                OpenCL 1.2 CUDA 9.2.101
      Platform Profile                                FULL_PROFILE
      Platform Extensions                             cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
      Platform Extensions function suffix             NV
    
      Platform Name                                   NVIDIA CUDA
    Number of devices                                 1
      Device Name                                     GeForce GTX 760
      Device Vendor                                   NVIDIA Corporation
      Device Vendor ID                                0x10de
      Device Version                                  OpenCL 1.2 CUDA
      Driver Version                                  396.24
      Device OpenCL C Version                         OpenCL C 1.2 
      Device Type                                     GPU
      Device Topology (NV)                            PCI-E, 02:00.0
      Device Profile                                  FULL_PROFILE
      Device Available                                Yes
      Compiler Available                              Yes
      Linker Available                                Yes
      Max compute units                               6
      Max clock frequency                             1032MHz
      Compute Capability (NV)                         3.0
      Device Partition                                (core)
        Max number of sub-devices                     1
        Supported partition types                     None
      Max work item dimensions                        3
      Max work item sizes                             1024x1024x64
      Max work group size                             1024
      Preferred work group size multiple              32
      Warp size (NV)                                  32
      Preferred / native vector sizes                 
        char                                                 1 / 1       
        short                                                1 / 1       
        int                                                  1 / 1       
        long                                                 1 / 1       
        half                                                 0 / 0        (n/a)
        float                                                1 / 1       
        double                                               1 / 1        (cl_khr_fp64)
      Half-precision Floating-point support           (n/a)
      Single-precision Floating-point support         (core)
        Denormals                                     Yes
        Infinity and NANs                             Yes
        Round to nearest                              Yes
        Round to zero                                 Yes
        Round to infinity                             Yes
        IEEE754-2008 fused multiply-add               Yes
        Support is emulated in software               No
        Correctly-rounded divide and sqrt operations  Yes
      Double-precision Floating-point support         (cl_khr_fp64)
        Denormals                                     Yes
        Infinity and NANs                             Yes
        Round to nearest                              Yes
        Round to zero                                 Yes
        Round to infinity                             Yes
        IEEE754-2008 fused multiply-add               Yes
        Support is emulated in software               No
      Address bits                                    64, Little-Endian
      Global memory size                              2095710208 (1.952GiB)
      Error Correction support                        No
      Max memory allocation                           523927552 (499.7MiB)
      Unified memory for Host and Device              No
      Integrated memory (NV)                          No
      Minimum alignment for any data type             128 bytes
      Alignment of base address                       4096 bits (512 bytes)
      Global Memory cache type                        Read/Write
      Global Memory cache size                        98304 (96KiB)
      Global Memory cache line size                   128 bytes
      Image support                                   Yes
        Max number of samplers per kernel             32
        Max size for 1D images from buffer            134217728 pixels
        Max 1D or 2D image array size                 2048 images
        Max 2D image size                             16384x16384 pixels
        Max 3D image size                             4096x4096x4096 pixels
        Max number of read image args                 256
        Max number of write image args                16
      Local memory type                               Local
      Local memory size                               49152 (48KiB)
      Registers per block (NV)                        65536
      Max number of constant args                     9
      Max constant buffer size                        65536 (64KiB)
      Max size of kernel argument                     4352 (4.25KiB)
      Queue properties                                
        Out-of-order execution                        Yes
        Profiling                                     Yes
      Prefer user sync for interop                    No
      Profiling timer resolution                      1000ns
      Execution capabilities                          
        Run OpenCL kernels                            Yes
        Run native kernels                            No
        Kernel execution timeout (NV)                 Yes
      Concurrent copy and kernel execution (NV)       Yes
        Number of async copy engines                  1
      printf() buffer size                            1048576 (1024KiB)
      Built-in kernels                                
      Device Extensions                               cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
    
    NULL platform behavior
      clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...)  NVIDIA CUDA
      clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...)   Success [NV]
      clCreateContext(NULL, ...) [default]            Success [NV]
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT)  No platform
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU)  No devices found in platform
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU)  No platform
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR)  No devices found in platform
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM)  Invalid device type for platform
      clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL)  No platform
    
    ICD loader properties
      ICD loader Name                                 OpenCL ICD Loader
      ICD loader Vendor                               OCL Icd free software
      ICD loader Version                              2.2.11
      ICD loader Profile                              OpenCL 2.1
    

    要在 18.04LTS 中安装 NVIDIA 显卡驱动程序,请按照以下步骤操作:

    在终端窗口中,输入:

    sudo apt-add-repository ppa:graphics-drivers/ppa
    

    然后运行更新:

    sudo apt update
    

    然后安装显卡驱动:

    sudo apt install nvidia-driver-396
    

    重启后可以运行nvidia-smi查看是否安装:

    terrance@terrance-ubuntu:~$ nvidia-smi
    Wed May  2 22:38:14 2018       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 396.24                 Driver Version: 396.24                    |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  GeForce GTX 760     Off  | 00000000:02:00.0 N/A |                  N/A |
    | 49%   51C    P0    N/A /  N/A |    262MiB /  1998MiB |     N/A      Default |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                       GPU Memory |
    |  GPU       PID   Type   Process name                             Usage      |
    |=============================================================================|
    |    0                    Not Supported                                       |
    +-----------------------------------------------------------------------------+
    

    希望这可以帮助!

    • 12
  2. Christian Aubry
    2019-02-05T10:27:42+08:002019-02-05T10:27:42+08:00

    我设法在我的笔记本电脑上安装了 CUDA,但在遇到 gcc-6 问题之前一直卡住。所以,总结一下:

    1. 安装nvidia专有驱动;
    2. 从 Ubuntu 存储库安装 nvidia-settings、nvidia-prime 和 nvidia-cuda-toolkit。
    3. 使用“nvcc --version”和/或“nvidia-smi”命令检查终端中是否安装了 CUDA。
    4. 最后,如果你看不到 CUDA,你必须确保你使用的是 gcc-6 而不是 gcc-7 或更高版本。我在这个线程中找到了解决方案并且它有效。

    1) 安装 gcc-6、g++-6 (CUDA 需要 gcc-6 !) 2) 在 /usr/bin 中以 root 身份,删除或重命名 gcc、gcc-ar、gcc-nm、gcc-ranlib 和 g++(如果它存在),然后 ln -s gcc-6 gcc;ln -s gcc-ar-6 gcc-ar; ln -s gcc-nm-6 gcc-nm;ln -s gcc-ranlib-6 gcc-ranlib; 和 ln -s g++-6 g++

    • 1

相关问题

  • 普利茅斯将来会允许使用专有图形驱动程序获得良好的启动体验吗?

  • 未连接到任何可见进程的令人讨厌的 CPU 峰值

  • 10.04 Lucid 中的多席位状态如何?[关闭]

  • 升级到 10.04 后字体模糊,Nvidia 问题?

  • 帮助让 Flash 播放器在第二个屏幕上工作?

Sidebar

Stats

  • 问题 205573
  • 回答 270741
  • 最佳答案 135370
  • 用户 68524
  • 热门
  • 回答
  • Marko Smith

    如何运行 .sh 脚本?

    • 16 个回答
  • Marko Smith

    如何安装 .tar.gz(或 .tar.bz2)文件?

    • 14 个回答
  • Marko Smith

    如何列出所有已安装的软件包

    • 24 个回答
  • Marko Smith

    无法锁定管理目录 (/var/lib/dpkg/) 是另一个进程在使用它吗?

    • 25 个回答
  • Martin Hope
    Flimm 如何在没有 sudo 的情况下使用 docker? 2014-06-07 00:17:43 +0800 CST
  • Martin Hope
    Ivan 如何列出所有已安装的软件包 2010-12-17 18:08:49 +0800 CST
  • Martin Hope
    La Ode Adam Saputra 无法锁定管理目录 (/var/lib/dpkg/) 是另一个进程在使用它吗? 2010-11-30 18:12:48 +0800 CST
  • Martin Hope
    David Barry 如何从命令行确定目录(文件夹)的总大小? 2010-08-06 10:20:23 +0800 CST
  • Martin Hope
    jfoucher “以下软件包已被保留:”为什么以及如何解决? 2010-08-01 13:59:22 +0800 CST
  • Martin Hope
    David Ashford 如何删除 PPA? 2010-07-30 01:09:42 +0800 CST

热门标签

10.10 10.04 gnome networking server command-line package-management software-recommendation sound xorg

Explore

  • 主页
  • 问题
    • 最新
    • 热门
  • 标签
  • 帮助

Footer

AskOverflow.Dev

关于我们

  • 关于我们
  • 联系我们

Legal Stuff

  • Privacy Policy

Language

  • Pt
  • Server
  • Unix

© 2023 AskOverflow.DEV All Rights Reserve