Declaração do problema
Você recebe um gráfico não direcionado ponderado G com N vértices, numerados de 1 a N. Inicialmente, G não possui arestas.
Você executará M operações para adicionar arestas a G. A i-ésima operação (1≤i≤M) é a seguinte:
Você recebe um subconjunto de vértices S i ={A i,1 , A i,2 , ,…,A i,Ki } consistindo em K i vértices. Para cada par u,v tal que u,v ∈ S i e u<v, adicione uma aresta entre os vértices u e v com peso C i . Depois de realizar todas as operações M, determine se G está conectado. Se for, encontre o peso total das arestas em uma árvore geradora mínima de G.
Código
from collections import defaultdict
def solution(A):
class Kruskal:
def __init__(self, G):
self.G = G
self.parent = {}
self.rank = {}
self.make_sets()
def make_sets(self):
for u, v in self.G:
if u not in self.parent:
self.parent[u] = u
self.rank[u] = 0
if v not in self.parent:
self.parent[v] = v
self.rank[v] = 0
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, u, v):
su, sv = self.find(u), self.find(v)
if su != sv:
if self.rank[su] > self.rank[sv]:
self.parent[sv] = su
else:
self.parent[su] = sv
if self.rank[su] == self.rank[sv]:
self.rank[sv] += 1
def _mst(self):
mst = []
for edge in self.G.keys():
u, v = edge
if self.find(u) != self.find(v):
self.union(u, v)
mst.append((u, v, self.G[edge]))
return mst
N, M = A[0]
graph = defaultdict(int)
for i in range(1, len(A)):
if i % 2 == 1:
k, c = A[i]
else:
edges = A[i]
for ii in range(len(edges)):
for jj in range(ii + 1, len(edges)):
if edges[ii] < edges[jj]:
if (edges[jj], edges[ii]) not in graph or (edges[ii], edges[jj]) not in graph:
graph[(edges[jj], edges[ii])] = c
graph[(edges[ii], edges[jj])] = c
continue
if (edges[jj], edges[ii]) in graph and graph[(edges[jj], edges[ii])] > c:
graph[(edges[jj], edges[ii])] = c
if (edges[ii], edges[jj]) in graph and graph[(edges[ii], edges[jj])] > c:
graph[(edges[ii], edges[jj])] = c
kruskal = Kruskal(graph)
MST = kruskal._mst()
res = 0
nodes = set()
# print(MST)
for x, y, z in sorted(MST, key=lambda o: o[-1]):
res += z
nodes.update({x, y})
if sorted(nodes) != list(range(1, N + 1)):
print(-1)
else:
print(res)
A = [[10, 5], [6, 158260522], [1, 3, 6, 8, 9, 10], [10, 877914575], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[4, 602436426], [2, 6, 7, 9], [6, 24979445], [2, 3, 4, 5, 8, 10], [4, 861648772], [2, 4, 8, 9]]
solution(A)
Pergunta
Ele produz: 4302960910
. A saída esperada é 1202115217
. O que eu perdi?
Alternativa:
from collections import defaultdict
from heapq import heappush, heappop
def solution(A):
def prim(G):
vis = set()
start, dest = next(iter(G))
vis.add(start)
Q, mst = [], []
for (start, nei), w in G.items():
heappush(Q, (w, start, nei))
while Q: # and len(vis) < len(G):
# print(Q)
w, src, dest = heappop(Q)
if dest in vis:
continue
vis.add(dest)
mst.append((src, dest, w))
for w, nei in G[dest]:
heappush(Q, (w, dest, nei))
return mst
N, M = A[0]
graph = defaultdict(list)
for i in range(1, len(A)):
if i % 2 == 1:
k, c = A[i]
else:
edges = A[i]
for ii in range(len(edges)):
for jj in range(ii + 1, len(edges)):
if edges[ii] < edges[jj]:
if (edges[jj], edges[ii]) not in graph:
graph[(edges[ii], edges[jj])] = c
graph[(edges[jj], edges[ii])] = c
continue
if (edges[jj], edges[ii]) in graph and graph[(edges[jj], edges[ii])] > c:
graph[(edges[jj], edges[ii])] = c
# if (edges[ii], edges[jj]) in graph and graph[(edges[ii], edges[jj])] > c:
# graph[(edges[ii], edges[jj])] = c
mst = prim(graph)
res = 0
s = set()
for x, y, w in mst:
res += w
s.update({x, y})
if sorted(s) != list(range(1, N + 1)):
print(-1)
else:
print(res)
A = [[10, 5], [6, 158260522], [1, 3, 6, 8, 9, 10], [10, 877914575], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[4, 602436426], [2, 6, 7, 9], [6, 24979445], [2, 3, 4, 5, 8, 10], [4, 861648772], [2, 4, 8, 9]]
solution(A)
O algoritmo alternativo parece estar funcionando "parcialmente", mas ainda não tenho certeza, se foi implementado corretamente?
Pseudo-código
algorithm Kruskal(G) is
F:= ∅
for each v in G.V do
MAKE-SET(v)
for each {u, v} in G.E ordered by weight({u, v}), increasing do
if FIND-SET(u) ≠ FIND-SET(v) then
F := F ∪ { {u, v} }
UNION(FIND-SET(u), FIND-SET(v))
return F
Como executar o código online?
- Use meu modelo Ideone .
- Mude o
solution
método pelo método corretosolution
. - Envie seu código neste link (é necessário um nome de usuário e senha de login).