Este código C faz DBSCAN - cluster espacial de aplicativos com ruído baseado em densidade. É um algoritmo de cluster para transformar dados não supervisionados (sem rótulos) em dados supervisionados (rótulos, por exemplo, número de classe). E também é rápido. A desvantagem do DBSCAN é que ele consome muita memória, mas sua velocidade é excelente!
Então o que fiz foi criar um algoritmo DBSCAN que usa recursão. Depois de terminar isso, noto que a recusa causou um estouro de pilha se o argumento da linha fosse grande.
Questões:
- Quero ter certeza de que as funções de recursão em C devem ser alocadas no heap, não na pilha. Como isso pode ser feito?
- Existe alguma maneira de garantir que esta função recursion_clustering não aumente nenhuma memória e use apenas memória estática? Tentei usar o máximo possível de ponteiros para evitar duplicação de memória.
Código:
/* Private function */
static bool recursion_clustering(const int32_t i, const size_t* row, const float* epsilon, const size_t* min_pts, const float C[], bool visited[], size_t idx[], int32_t* id, int32_t* count);
/*
* Create ID's of clusters
* X[m*n]
* idx[m] = Contains cluster ID. Noise ID is 0
* epsilon = Raduis of the clusters
* min_pts = Minimum points of a valid cluster
*/
void dbscan(const float X[], size_t idx[], const float epsilon, const size_t min_pts, const size_t row, const size_t column) {
/* Create idx */
memset(idx, 0, row * sizeof(size_t));
/* Create pdist2 C */
float* C = (float*)malloc(row * row * sizeof(float));
pdist2(X, X, C, row, column, row, PDIST2_METRIC_EUCLIDEAN);
/* Flags */
bool* visited = (bool*)malloc(row * sizeof(bool));
memset(visited, false, row * sizeof(bool));
/* Iterate */
int32_t i, count, id = 1;
for (i = 0; i < row; i++) {
if (recursion_clustering(i, &row, &epsilon, &min_pts, C, visited, idx, &id, &count)) {
/* Set ID value */
idx[i] = id;
id++;
}
}
/* Free */
free(C);
free(visited);
}
static bool recursion_clustering(const int32_t i, const size_t* row, const float* epsilon, const size_t* min_pts, const float C[], bool visited[], size_t idx[], int32_t* id, int32_t* count) {
/* Declare variables */
int32_t j;
/* Check if already visited - else mark as visited */
if (visited[i]) {
return false;
}
else {
visited[i] = true;
}
/* Begin first with the row of C */
*count = 0;
for (j = 0; j < *row; j++) {
/* Check how many index exceeds min_pts */
if (C[i * (*row) + j] <= *epsilon) {
(*count)++;
}
}
/* Check if count is less than min_pts */
if (*count < *min_pts) {
return false;
}
/* Iterate forward */
for (j = i + 1; j < *row; j++) {
if (!visited[j] && C[i * (*row) + j] <= *epsilon) {
/* Recursion */
if (recursion_clustering(j, row, epsilon, min_pts, C, visited, idx, id, count)){
/* Set ID value */
idx[j] = *id;
}
}
}
/* Iterate backward */
for (j = i - 1; j >= 0; j--) {
if (!visited[j]) {
/* Recursion */
if (recursion_clustering(j, row, epsilon, min_pts, C, visited, idx, id, count)) {
/* Set ID value */
idx[j] = *id;
}
}
}
/* Return true */
return true;
}
Se quiser executar este código, você precisará deste exemplo prático.
#define row 65
#define column 3
int main() {
/* Define X, idx, epsilon and min_pts */
float X[row * column] = { -0.251521, 1.045117, -1.281658,
-1.974109, 0.278170, -1.023392,
-0.957729, -0.977450, 0.477872,
-0.449159, -1.016680, 0.095610,
-1.785787, -1.403543, 0.483454,
1.366889, -0.762590, -1.162454,
2.129839, 0.358568, -2.118250,
0.751071, -1.766582, 0.178434,
-1.980847, -1.320933, -0.457778,
-0.478030, 0.606917, -1.630624,
3.674916, 0.088957, 0.877373,
0.637213, 0.079176, 0.342038,
1.142329, 0.629997, 0.311134,
-0.878974, 0.042527, 0.736522,
1.751637, -1.434299, -1.325140,
1.110682, 1.091970, 1.434869,
-0.504482, -2.504821, -1.245315,
-0.102915, -0.203266, -0.849767,
-0.822834, 1.158801, -0.405579,
-1.278287, 0.391306, 0.857077,
/* Outliers */
45, 43, 0,
23, -3, 2,
10.6772, 10.7365, 9.9264,
8.7785, 11.1680, 9.5915,
8.6872, 9.6464, 10.3801,
10.0142, 8.8311, 9.2021,
8.4179, 9.8572, 11.6356,
9.8487, 10.4979, 10.8620,
10.0957, 9.7878, 12.2653,
11.4528, 11.5186, 10.3050,
10.9284, 9.9654, 10.4562,
8.5272, 10.7451, 9.8355,
10.1508, 10.2318, 10.2417,
10.7342, 10.0689, 9.9918,
10.4784, 9.2032, 10.6060,
10.1309, 9.4392, 10.9674,
10.6971, 10.3347, 11.0447,
7.9489, 9.4566, 9.5258,
10.4827, 10.3030, 10.5582,
10.4496, 10.3880, 11.1661,
11.0291, 10.0233, 9.9280,
9.0638, 9.3650, 9.3670,
/* Outliers */
32, 54, 23,
23, 51, 77,
-34.233, -30.841, -31.720,
-32.629, -31.786, -31.290,
-31.466, -31.984, -33.254,
-31.878, -33.052, -31.761,
-33.528, -30.921, -32.836,
-31.793, -32.082, -30.453,
-31.812, -32.417, -31.874,
-32.127, -32.599, -32.806,
-32.979, -32.096, -31.754,
-31.759, -31.925, -31.313,
-30.531, -31.838, -31.179,
-32.168, -31.928, -30.649,
-31.049, -32.092, -31.408,
-33.006, -31.753, -31.961,
-32.092, -32.391, -31.501,
-31.184, -31.634, -32.802,
-30.658, -31.616, -31.493,
-31.958, -31.694, -31.425,
-33.114, -32.029, -31.459,
-31.081, -34.486, -32.020,
/* Outlier */
-22, -34, 53 };
size_t idx[row] = { 0 };
float epsilon = 10;
size_t min_pts = 3;
/* Compute dbscan */
dbscan(X, idx, epsilon, min_pts, row, column);
/* Print idx */
size_t i;
for (i = 0; i < row; i++) {
printf("%i\n", idx[i]);
}
return 0;
}
A saída se torna:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0