Estou tentando provar
¬Any≃All¬ : ∀ {A : Set} → {P : A → Set} → (xs : List A) → (¬_ ∘ Any P) xs ≃ All (¬_ ∘ P) xs
Eu defini
to [] t = []
to (x :: xs) v = (v ∘ here) ∷ to xs (v ∘ there)
from [] [] ()
from (x :: xs´) (¬Px ∷ ¬Pxs´) = λ { (here Px) → ¬Px Px ; (there Pxs´) → (from xs´ ¬Pxs´) Pxs´}
O problema vem da tentativa de definir
FromTo : ∀ {A : Set} → {P : A → Set} → (xs : List A) → (v : (¬_ ∘ Any P) xs) → ((from xs) ∘ (to xs)) v ≡ v
Minha ideia é escrever algo assim:
FromTo [] t = extensionality (λ {()})
FromTo (x :: xs´) v =
begin
((from (x :: xs´)) ∘ (to (x :: xs´))) v
≡⟨⟩
(from (x :: xs´))(to (x :: xs´) v)
≡⟨⟩
(from (x :: xs´))((v ∘ here) ∷ (to xs´ (v ∘ there)))
≡⟨⟩
λ { (here Px´) → (v ∘ here) Px´ ; (there Pxs´) → (from xs´ (to xs´ (v ∘ there))) Pxs´ }
≡⟨⟩ -- PARSE ERROR
λ { (here Px´) → v (here Px´) ; (there Pxs´) → (from xs´ (to xs´ (v ∘ there))) Pxs´ }
≡⟨ FromTo xs´ (λ u → v (there u)) ⟩
λ { (here Px´) → v (here Px´) ; (there Pxs´) → (v ∘ there) Pxs´ }
≡⟨⟩
λ { (here Px´) → v (here Px´) ; (there Pxs´) → v (there Pxs´) }
≡⟨⟩
v
∎
O problema que tenho é que tenho um erro de análise estranho:
Parse error
≡⟨⟩<ERROR>
λ { (here Px´) → v (h...
localizado aqui:
λ { (here Px´) → (v ∘ here) Px´ ; (there Pxs´) → (from xs´ (to xs´ (v ∘ there))) Pxs´ }
≡⟨⟩
λ { (here Px´) → v (here Px´) ; (there Pxs´) → (from xs´ (to xs´ (v ∘ there))) Pxs´ }
Tentei de tudo para ver se estava faltando algum espaço em branco ou se as tabulações estavam erradas ou o que quer que seja, mas nada. O problema aparece quando há duas lambdas separadas por um ≡⟨⟩.
Coloque as lambdas entre parênteses: