AskOverflow.Dev

AskOverflow.Dev Logo AskOverflow.Dev Logo

AskOverflow.Dev Navigation

  • Início
  • system&network
  • Ubuntu
  • Unix
  • DBA
  • Computer
  • Coding
  • LangChain

Mobile menu

Close
  • Início
  • system&network
    • Recentes
    • Highest score
    • tags
  • Ubuntu
    • Recentes
    • Highest score
    • tags
  • Unix
    • Recentes
    • tags
  • DBA
    • Recentes
    • tags
  • Computer
    • Recentes
    • tags
  • Coding
    • Recentes
    • tags
Início / coding / Perguntas / 78933232
Accepted
Simon
Simon
Asked: 2024-08-31 01:47:59 +0800 CST2024-08-31 01:47:59 +0800 CST 2024-08-31 01:47:59 +0800 CST

Continue treinando o modelo pytorch em novos dados

  • 772

Estou trabalhando em uma tarefa de classificação de texto e decidi usar um modelo PyTorch para esse propósito. O processo envolve principalmente as seguintes etapas:

  1. Carregue e processe o texto.
  2. Use um vetorizador TF-IDF.
  3. Crie a rede neural e salve o TF-IDF Vectorizer e o modelo para prever novos dados.

No entanto, todos os dias preciso classificar novos comentários e corrigir quaisquer classificações erradas.

Atualmente, minha abordagem é adicionar os novos comentários com a classificação correta ao conjunto de dados e treinar novamente o modelo inteiro. Esse processo é demorado, e os novos comentários podem ser perdidos durante a validação. Gostaria de criar um novo conjunto de dados com os textos recém-classificados e continuar treinando sobre esses novos dados (os novos comentários são classificados manualmente, então cada rótulo está correto).

Usando GPT e algum código online, escrevo o processo desejado, no entanto, não tenho certeza se está funcionando como esperado ou se estou cometendo alguns erros bobos que não deveriam acontecer.

Então as principais questões são:

  1. Como posso verificar se a maneira proposta para resolver esse problema funciona como eu espero?
  2. O que posso fazer com o vetorizador quando ele enfrenta novos tokens? Posso simplesmente fazer isso .fit_transform()ou perderei o vetorizador original?

Aqui está o processo completo de treinamento:

import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.preprocessing import LabelEncoder
import polars as pl
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
import joblib

set1 = (
    pl
    .read_csv(
        "set1.txt",
        separator=";",
        has_header=False,
        new_columns=["text","label"]
    )
)

# since the dateset its unbalanced, im going to force to have more balance

fear_df = set1.filter(pl.col("label") == "fear")
joy_df = set1.filter(pl.col("label") == "joy").sample(n=2500)
sadness_df = set1.filter(pl.col("label") == "sadness").sample(n=2500)
anger_df = set1.filter(pl.col("label") == "anger")

train_df = pl.concat([fear_df,joy_df,sadness_df,anger_df])

"""
The text its already clean, so im going to change the labels to numeric
and then split it on train, test ,val
"""

label_mapping = {
    "anger": 0,
    "fear": 1,
    "joy": 2,
    "sadness": 3
}

train_mapped = (
    train_df
    .with_columns(
        pl.col("label").replace_strict(label_mapping, default="other").cast(pl.Int16)
    )
   
)

train_set, pre_Test = train_test_split(train_mapped,
                                    test_size=0.4,
                                    random_state=42,
                                    stratify=train_mapped["label"])

test_set, val_set = train_test_split(pre_Test,
                                    test_size=0.5,
                                    random_state=42,
                                    stratify=pre_Test["label"]) 

# Vectorize text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=30000, ngram_range=(1, 2))

X_train_tfidf = vectorizer.fit_transform(train_set['text']).toarray()
X_val_tfidf = vectorizer.transform(val_set['text']).toarray()
X_test_tfidf = vectorizer.transform(test_set['text']).toarray()

y_train = train_set['label']
y_val = val_set['label']
y_test = test_set['label']

class TextDataset(Dataset):
    def __init__(self, texts, labels):
        self.texts = texts
        self.labels = labels
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]
        return text, label
    
train_dataset = TextDataset(X_train_tfidf, y_train)
val_dataset = TextDataset(X_val_tfidf, y_val)
test_dataset = TextDataset(X_test_tfidf, y_test)

batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

class TextClassificationModel(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(TextClassificationModel, self).__init__()
        self.fc1 = nn.Linear(input_dim, 64)
        self.dropout1 = nn.Dropout(0.5)
        self.fc2 = nn.Linear(64, 32)
        self.dropout2 = nn.Dropout(0.5)
        self.fc3 = nn.Linear(32, num_classes)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.dropout1(x)
        x = torch.relu(self.fc2(x))
        x = self.dropout2(x)
        x = torch.softmax(self.fc3(x), dim=1)
        return x
    
input_dim = X_train_tfidf.shape[1]
model = TextClassificationModel(input_dim, 4)

# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adamax(model.parameters())

# Training loop
num_epochs = 17
best_val_acc = 0.0
best_model_path = "modelbest.pth"

for epoch in range(num_epochs):
    model.train()
    for texts, labels in train_loader:
        texts, labels = texts.float(), labels.long()
        outputs = model(texts)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # Validation
    model.eval()
    correct, total = 0, 0
    with torch.no_grad():
        for texts, labels in val_loader:
            texts, labels = texts.float(), labels.long()
            outputs = model(texts)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    val_acc = correct / total
    if val_acc > best_val_acc:
        best_val_acc = val_acc
        torch.save(model.state_dict(), best_model_path)

    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Val Acc: {val_acc:.4f}')

# Load the best model
model.load_state_dict(torch.load(best_model_path))

# Load the best model
model.load_state_dict(torch.load(best_model_path))

# Test the model
model.eval()
correct, total = 0, 0
with torch.no_grad():
    for texts, labels in test_loader:
        texts, labels = texts.float(), labels.long()
        outputs = model(texts)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
test_acc = correct / total
print(f'Test Acc: {test_acc:.3f}')


# Save the TF-IDF vectorizer
vectorizer_path = "tfidf_vectorizer.pkl"
joblib.dump(vectorizer, vectorizer_path)

# Save the PyTorch model
model_path = "text_classification_model.pth"
torch.save(model.state_dict(), model_path)

Código proposto:

import torch
import joblib
import polars as pl
from sklearn.model_selection import train_test_split
from torch import nn
from torch.utils.data import Dataset, DataLoader

# Load the saved TF-IDF vectorizer
vectorizer_path = "tfidf_vectorizer.pkl"
vectorizer = joblib.load(vectorizer_path)

input_dim = len(vectorizer.get_feature_names_out())

class TextClassificationModel(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(TextClassificationModel, self).__init__()
        self.fc1 = nn.Linear(input_dim, 64)
        self.dropout1 = nn.Dropout(0.5)
        self.fc2 = nn.Linear(64, 32)
        self.dropout2 = nn.Dropout(0.5)
        self.fc3 = nn.Linear(32, num_classes)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.dropout1(x)
        x = torch.relu(self.fc2(x))
        x = self.dropout2(x)
        x = torch.softmax(self.fc3(x), dim=1)
        return x
    
# Load the saved PyTorch model
model_path = "text_classification_model.pth"
model = TextClassificationModel(input_dim, 4)
model.load_state_dict(torch.load(model_path))

# Map labels to numeric values
label_mapping = {"anger": 0, "fear": 1, "joy": 2, "sadness": 3}
sentiments = ["fear","joy","sadness","anger"]

new_data = (
    pl
    .read_csv(
        "set2.txt",
        separator=";",
        has_header=False,
        new_columns=["text","label"]
    )
    .filter(pl.col("label").is_in(sentiments))
    .with_columns(
        pl.col("label").replace_strict(label_mapping, default="other").cast(pl.Int16)
    )
    
)
# Vectorize the new text data using the loaded TF-IDF vectorizer
X_new = vectorizer.transform(new_data['text']).toarray()
y_new = new_data['label']

class TextDataset(Dataset):
    def __init__(self, texts, labels):
        self.texts = texts
        self.labels = labels
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]
        return text, label

batch_size = 10
   
# Create DataLoader for the new training data
new_train_dataset = TextDataset(X_new, y_new)
new_train_loader = DataLoader(new_train_dataset, batch_size=batch_size, shuffle=True)

# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adamax(model.parameters())

num_epochs = 5
new_best_model_path = "modelbest.pth"
for epoch in range(num_epochs):
    model.train()
    for texts, labels in new_train_loader:
        texts, labels = texts.float(), labels.long()
        outputs = model(texts)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        torch.save(model.state_dict(), new_best_model_path)
        
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# Save the PyTorch model
new_best_model_path = "new_moedl.pth"
torch.save(model.state_dict(), new_best_model_path)

O conjunto de dados pode ser encontrado aqui

  • 1 1 respostas
  • 39 Views

1 respostas

  • Voted
  1. Best Answer
    divyang4481
    2024-08-31T10:50:05+08:002024-08-31T10:50:05+08:00

    use embeddings de palavras pré-treinados como BertForSequenceClassification. Esses embeddings podem lidar com tokens não vistos de forma mais elegante, pois mapeiam palavras para vetores contínuos com base no significado semântico, reduzindo o impacto de palavras não vistas.

    Treinamento de modelo com BERT

    import torch
    from torch import nn, optim
    from torch.utils.data import DataLoader, Dataset
    from transformers import BertTokenizer, BertModel, BertForSequenceClassification
    from transformers import Trainer, TrainingArguments
    from sklearn.model_selection import train_test_split
    import polars as pl
    
    # Load and prepare data
    set1 = pl.read_csv("set1.txt", separator=";", has_header=False, new_columns=["text", "label"])
    
    # Balance dataset
    fear_df = set1.filter(pl.col("label") == "fear")
    joy_df = set1.filter(pl.col("label") == "joy").sample(n=2500)
    sadness_df = set1.filter(pl.col("label") == "sadness").sample(n=2500)
    anger_df = set1.filter(pl.col("label") == "anger")
    train_df = pl.concat([fear_df, joy_df, sadness_df, anger_df])
    
    label_mapping = {"anger": 0, "fear": 1, "joy": 2, "sadness": 3}
    train_df = train_df.with_columns(pl.col("label").replace_strict(label_mapping, default="other").cast(pl.Int16))
    
    # Split dataset
    train_set, test_val_set = train_test_split(train_df, test_size=0.4, random_state=42, stratify=train_df["label"])
    test_set, val_set = train_test_split(test_val_set, test_size=0.5, random_state=42, stratify=test_val_set["label"])
    
    # Dataset class
    class TextDataset(Dataset):
        def __init__(self, texts, labels, tokenizer, max_length=128):
            self.texts = texts
            self.labels = labels
            self.tokenizer = tokenizer
            self.max_length = max_length
    
        def __len__(self):
            return len(self.texts)
    
        def __getitem__(self, idx):
            text = self.texts[idx]
            label = self.labels[idx]
            encoding = self.tokenizer.encode_plus(
                text,
                add_special_tokens=True,
                max_length=self.max_length,
                padding='max_length',
                truncation=True,
                return_tensors='pt'
            )
            return {
                'input_ids': encoding['input_ids'].flatten(),
                'attention_mask': encoding['attention_mask'].flatten(),
                'labels': torch.tensor(label, dtype=torch.long)
            }
    
    # Initialize tokenizer and datasets
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    train_dataset = TextDataset(train_set['text'], train_set['label'], tokenizer)
    val_dataset = TextDataset(val_set['text'], val_set['label'], tokenizer)
    test_dataset = TextDataset(test_set['text'], test_set['label'], tokenizer)
    
    # Initialize BERT model for classification
    model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=4)
    
    # Training arguments
    training_args = TrainingArguments(
        output_dir='./results',
        num_train_epochs=3,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        evaluation_strategy='epoch',
        save_strategy='epoch',
        logging_dir='./logs',
        learning_rate=2e-5,
        load_best_model_at_end=True
    )
    
    # Define Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset
    )
    
    # Train model
    trainer.train()
    
    # Evaluate model
    results = trainer.evaluate(test_dataset)
    print(f"Test Accuracy: {results['eval_accuracy']:.4f}")
    
    # Save the model and tokenizer
    model.save_pretrained("saved_model")
    tokenizer.save_pretrained("saved_tokenizer")
    

    Treinamento incremental com o mínimo de esforço

    # Load the saved model and tokenizer
    model = BertForSequenceClassification.from_pretrained("saved_model")
    tokenizer = BertTokenizer.from_pretrained("saved_tokenizer")
    
    # Load new data
    new_data = (
        pl.read_csv("set2.txt", separator=";", has_header=False, new_columns=["text", "label"])
        .filter(pl.col("label").is_in(["fear", "joy", "sadness", "anger"]))
        .with_columns(pl.col("label").replace_strict(label_mapping, default="other").cast(pl.Int16))
    )
    
    # Create new dataset
    new_dataset = TextDataset(new_data['text'], new_data['label'], tokenizer)
    
    # Update training arguments for incremental training
    new_training_args = TrainingArguments(
        output_dir='./results_incremental',
        num_train_epochs=2,  # Fewer epochs since it's incremental
        per_device_train_batch_size=16,
        evaluation_strategy='epoch',
        logging_dir='./logs_incremental',
        learning_rate=2e-5,
        load_best_model_at_end=True
    )
    
    # Define new trainer
    new_trainer = Trainer(
        model=model,
        args=new_training_args,
        train_dataset=new_dataset,
        eval_dataset=val_dataset  # Validate on previous validation set
    )
    
    # Train on new data
    new_trainer.train()
    
    # Evaluate after retraining
    new_results = new_trainer.evaluate(test_dataset)
    print(f"Test Accuracy After Incremental Training: {new_results['eval_accuracy']:.4f}")
    
    # Save the updated model
    model.save_pretrained("saved_model_incremental")
    
    • 2

relate perguntas

  • Adicionar número de série para atividade de cópia ao blob

  • A fonte dinâmica do empacotador duplica artefatos

  • Selecione linhas por grupo com 1s consecutivos

  • Lista de chamada de API de gráfico subscritoSkus estados Privilégios insuficientes enquanto os privilégios são concedidos

  • Função para criar DFs separados com base no valor da coluna

Sidebar

Stats

  • Perguntas 205573
  • respostas 270741
  • best respostas 135370
  • utilizador 68524
  • Highest score
  • respostas
  • Marko Smith

    Vue 3: Erro na criação "Identificador esperado, mas encontrado 'import'" [duplicado]

    • 1 respostas
  • Marko Smith

    Por que esse código Java simples e pequeno roda 30x mais rápido em todas as JVMs Graal, mas não em nenhuma JVM Oracle?

    • 1 respostas
  • Marko Smith

    Qual é o propósito de `enum class` com um tipo subjacente especificado, mas sem enumeradores?

    • 1 respostas
  • Marko Smith

    Como faço para corrigir um erro MODULE_NOT_FOUND para um módulo que não importei manualmente?

    • 6 respostas
  • Marko Smith

    `(expression, lvalue) = rvalue` é uma atribuição válida em C ou C++? Por que alguns compiladores aceitam/rejeitam isso?

    • 3 respostas
  • Marko Smith

    Quando devo usar um std::inplace_vector em vez de um std::vector?

    • 3 respostas
  • Marko Smith

    Um programa vazio que não faz nada em C++ precisa de um heap de 204 KB, mas não em C

    • 1 respostas
  • Marko Smith

    PowerBI atualmente quebrado com BigQuery: problema de driver Simba com atualização do Windows

    • 2 respostas
  • Marko Smith

    AdMob: MobileAds.initialize() - "java.lang.Integer não pode ser convertido em java.lang.String" para alguns dispositivos

    • 1 respostas
  • Marko Smith

    Estou tentando fazer o jogo pacman usando apenas o módulo Turtle Random e Math

    • 1 respostas
  • Martin Hope
    Aleksandr Dubinsky Por que a correspondência de padrões com o switch no InetAddress falha com 'não cobre todos os valores de entrada possíveis'? 2024-12-23 06:56:21 +0800 CST
  • Martin Hope
    Phillip Borge Por que esse código Java simples e pequeno roda 30x mais rápido em todas as JVMs Graal, mas não em nenhuma JVM Oracle? 2024-12-12 20:46:46 +0800 CST
  • Martin Hope
    Oodini Qual é o propósito de `enum class` com um tipo subjacente especificado, mas sem enumeradores? 2024-12-12 06:27:11 +0800 CST
  • Martin Hope
    sleeptightAnsiC `(expression, lvalue) = rvalue` é uma atribuição válida em C ou C++? Por que alguns compiladores aceitam/rejeitam isso? 2024-11-09 07:18:53 +0800 CST
  • Martin Hope
    The Mad Gamer Quando devo usar um std::inplace_vector em vez de um std::vector? 2024-10-29 23:01:00 +0800 CST
  • Martin Hope
    Chad Feller O ponto e vírgula agora é opcional em condicionais bash com [[ .. ]] na versão 5.2? 2024-10-21 05:50:33 +0800 CST
  • Martin Hope
    Wrench Por que um traço duplo (--) faz com que esta cláusula MariaDB seja avaliada como verdadeira? 2024-05-05 13:37:20 +0800 CST
  • Martin Hope
    Waket Zheng Por que `dict(id=1, **{'id': 2})` às vezes gera `KeyError: 'id'` em vez de um TypeError? 2024-05-04 14:19:19 +0800 CST
  • Martin Hope
    user924 AdMob: MobileAds.initialize() - "java.lang.Integer não pode ser convertido em java.lang.String" para alguns dispositivos 2024-03-20 03:12:31 +0800 CST
  • Martin Hope
    MarkB Por que o GCC gera código que executa condicionalmente uma implementação SIMD? 2024-02-17 06:17:14 +0800 CST

Hot tag

python javascript c++ c# java typescript sql reactjs html

Explore

  • Início
  • Perguntas
    • Recentes
    • Highest score
  • tag
  • help

Footer

AskOverflow.Dev

About Us

  • About Us
  • Contact Us

Legal Stuff

  • Privacy Policy

Language

  • Pt
  • Server
  • Unix

© 2023 AskOverflow.DEV All Rights Reserve