AskOverflow.Dev

AskOverflow.Dev Logo AskOverflow.Dev Logo

AskOverflow.Dev Navigation

  • Início
  • system&network
  • Ubuntu
  • Unix
  • DBA
  • Computer
  • Coding
  • LangChain

Mobile menu

Close
  • Início
  • system&network
    • Recentes
    • Highest score
    • tags
  • Ubuntu
    • Recentes
    • Highest score
    • tags
  • Unix
    • Recentes
    • tags
  • DBA
    • Recentes
    • tags
  • Computer
    • Recentes
    • tags
  • Coding
    • Recentes
    • tags
Início / coding / Perguntas / 78052172
Accepted
Chris Ruehlemann
Chris Ruehlemann
Asked: 2024-02-24 19:12:23 +0800 CST2024-02-24 19:12:23 +0800 CST 2024-02-24 19:12:23 +0800 CST

Plotar modelo de efeitos mistos com preditor binário e variável de resposta binária

  • 772

Estou procurando uma maneira agradável e informativa de visualizar um modelo misto em que a variável de resposta e a variável preditora sejam binárias.

m_0 <- glmer(Preselected_0 ~ N_G_altnt_Q_YN + (N_G_altnt_Q_YN | File / Person_anon), family = "binomial", 
                    data = df)

O gráfico que recebo ao usar plot_modelé este:

library(sjPlot)

plot_model(m_0, type = "eff", terms = c("N_G_altnt_Q_YN"), #pred.type = "fe", ci.lvl = .68, line.size = 1.2,
           title = ""
)

insira a descrição da imagem aqui

O tipo de gráfico que eu gostaria de obter é este: ou, se isso não for possível ou aconselhável com o preditor binário, alguma outra visualização que seja visualmente mais atraente e informativa - qualquer ajuda será apreciada!

insira a descrição da imagem aqui

Dados:

df <- structure(list(N_G_altnt_Q_YN = structure(c(1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L), levels = c("0", "1"), class = "factor"), 
    Preselected_0 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 
    2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 
    2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 
    2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 
    2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
    1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 
    2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L), levels = c("YES", "NO"
    ), class = "factor"), File = c("F01", "F01", "F01", "F01", 
    "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", 
    "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", 
    "F01", "F01", "F01", "F01", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", 
    "F04", "F04", "F04", "F04", "F04", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", 
    "F07", "F07", "F07", "F07", "F08", "F08", "F08", "F08", "F08", 
    "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", 
    "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", 
    "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", 
    "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F12", "F12", 
    "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", 
    "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", 
    "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F16", 
    "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", 
    "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", 
    "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", 
    "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", 
    "F18", "F18", "F18", "F18", "F18", "F20", "F20", "F20", "F20", 
    "F20", "F20", "F20", "F20", "F20", "F20", "F20", "F20", "F20", 
    "F20", "F20", "F20", "F20", "F20", "F20", "F22", "F22", "F22", 
    "F22", "F22", "F22", "F22", "F22", "F22", "F22", "F23", "F23", 
    "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", 
    "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", 
    "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", 
    "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", 
    "F23", "F19", "F19", "F19", "F19", "F19", "F19", "F19", "F19", 
    "F19", "F19", "F19", "F16"), Person_anon = c("GGGGGGGGGGGGGGGl", 
    "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", 
    "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "GGGGGGGGGGGGGGGl", "IIIIIIIIIIIIt", 
    "IIIIIIIIIIIIt", "KKKKKKKKKKr", "IIIIIIIIIIIIt", "KKKKKKKKKKr", 
    "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "GGGGGGGGGGGGGGGl", 
    "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "KKKKKKKKKKr", "IIIIIIIIIIIIt", 
    "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", 
    "IIIIIIIIIIIIt", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "CCCCCCCCCCx", 
    "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "DDDDDDDDDDDDe", "CCCCCCCCCCx", 
    "CCCCCCCCCCx", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", 
    "DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe", 
    "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "CCCCCCCCCCx", 
    "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "CCCCCCCCCCx", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe", 
    "CCCCCCCCCCx", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe", 
    "CCCCCCCCCCx", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", 
    "CCCCCCCCCCx", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", 
    "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", 
    "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "CCCCCCCCCCx", "CCCCCCCCCCx", 
    "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", 
    "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "CCCCCCCCCCx", "CCCCCCCCCCx", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", 
    "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", 
    "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", 
    "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLo", "NNNNNNNNNNNr", 
    "NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr", 
    "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", 
    "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "NNNNNNNNNNNr", "LLLLLLLLLLLLLo", 
    "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", 
    "NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr", 
    "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLn", 
    "LLLLLLLLLLLLLo", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "LLLLLLLLLLLLLn", 
    "LLLLLLLLLLLLLn", "NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr", 
    "NNNNNNNNNNNr", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "CCCCCCCCCCx", 
    "LLLLLLLLLLLLLo", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "LLLLLLLLLLLLLo", 
    "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "CCCCCCCCCCx", 
    "CCCCCCCCCCx", "CCCCCCCCCCx", "CCCCCCCCCCx", "DDDDDDDDDDDDe", 
    "CCCCCCCCCCx", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "LLLLLLLLLLLLLo", "DDDDDDDDDDDDe", 
    "DDDDDDDDDDDDe", "CCCCCCCCCCx", "CCCCCCCCCCx", "AAAAAAAAAAo", 
    "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", 
    "AAAAAAAAAAo", "CCCCCCCCCCx", "CCCCCCCCCCCCCCx", "AAAAAAAAAAo", 
    "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", 
    "AAAAAAAAAAo", "CCCCCCCCCCCCCCx", "AAAAAAAAAAo", "CCCCCCCCCCCCCCx", 
    "SSSSSSSSSSd", "SSSSSSSSSSd", "GGGGGGGGGGGGGi", "SSSSSSSSSSd", 
    "SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd", "SSSSSSSSSSd", 
    "AAAAAAAAAAo", "SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd", 
    "SSSSSSSSSSd", "SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd", 
    "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", 
    "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "SSSSSSSSSSd", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "JJJJJJJJJJJJy", "JJJJJJJJJJJJy", "JJJJJJJJJJJJy", "JJJJJJJJJJJJJJJJJJd", 
    "JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJy", 
    "JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJy", "JJJJJJJJJJJJy", 
    "LLLLLLLLLLn", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "OOOOOOOOOOOOm", 
    "LLLLLLLLLLn", "CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "LLLLLLLLLLn", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "LLLLLLLLLLn", "LLLLLLLLLLn", "LLLLLLLLLLn", 
    "OOOOOOOOOOOOm", "CCCCCCCCCCCCd", "LLLLLLLLLLn", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", 
    "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "LLLLLLLLLLn", "LLLLLLLLLLn", 
    "LLLLLLLLLLn", "LLLLLLLLLLn", "OOOOOOOOOOOOm", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", 
    "LLLLLLLLLLLLLLLLLLLl", "AAAAAAAAAAo")), row.names = c(NA, 
-332L), class = c("tbl_df", "tbl", "data.frame"))
  • 1 1 respostas
  • 24 Views

1 respostas

  • Voted
  1. Best Answer
    PBulls
    2024-02-25T00:47:11+08:002024-02-25T00:47:11+08:00

    Você pode fazer isso facilmente ajustando seu resultado categórico como um efeito fictício codificado 0/1 real. Isso é o que acontece de qualquer maneira dentro de qualquer rotina de ajuste, mas são os predictmétodos subsequentes que não saberão o que fazer com onde queremos ir:

    ## This is what the design matrix looks like inside glmer()
    unique(model.matrix(~N_G_altnt_Q_YN, data=df))
    #>  (Intercept) N_G_altnt_Q_YN1
    #>          1               0
    #>          1               1
    
    ## Manually code our effect to be 0/1 (numeric)
    df$X <- as.integer(df$N_G_altnt_Q_YN == 1)
    
    ## Fit this numeric effect
    m_1 <- glmer(Preselected_0 ~ X + (X | File / Person_anon),
                 family = "binomial", data = df)
    

    Não vou mostrar isso aqui, mas isso não muda nada nas estimativas fixas ou aleatórias do seu modelo, simplesmente removeu o tipo de fator do preditor. Se você tivesse mais de dois níveis nesse fator, teria que criar mais manequins, mas o mesmo princípio se aplica (e, novamente, é isso que model.matrixacontecerá dentro de qualquer modelo).

    A grande vantagem é que agora podemos usar predictoutros valores além de 0/1 - mesmo fora desses limites, se você quiser, embora claramente isso não fizesse sentido.

    ## Helper function to back-transform log odds
    expit <- function(x) 1/(1+exp(-x))
    
    ## Desired prediction range
    x <- seq(0, 1, length.out = 2E2)
    
    pred <- predict(m_1, data.frame(X = x), re.form = ~0, se.fit = TRUE) |>
       do.call(cbind, args = _) |>
       cbind(x) |>
       as.data.frame() |>
       dplyr::mutate(est = expit(fit),
                     ## Calculate Wald 95% confidence bounds
                     lower = expit(fit - se.fit*qnorm(.975)),
                     upper = expit(fit + se.fit*qnorm(.975)))
    

    Fizemos algumas coisas na última chamada: solicitamos médias previstas de efeito fixo e erros padrão em todo o intervalo de previsão e calculamos um intervalo de confiança de 95% do tipo Wald usando-os. Finalmente, tudo foi transformado da escala logarítmica de probabilidades para a escala de resposta (probabilidade). Você precisa executar essa etapa por último porque não pode calcular esse intervalo de confiança diretamente na escala de resposta.

    Agora só falta produzir um enredo. Vou me ater às rotinas básicas em vez de, por exemplo ggplot2:

    plot(c(0,1), c(0,1), type="n", xlab="", ylab="", xaxt="none")
    axis(1, labels=c("no", "yes"), at=0:1)
    polygon(c(x, rev(x)), c(pred$upper, rev(pred$lower)), col="grey90", lty=0)
    lines(pred$x, pred$est, lwd=3)
    

    gráfico de previsão

    Algumas notas finais:

    • Você tem um aviso de convergência neste modelo. Presumo que sejam dados fictícios, mas é algo que você desejará investigar (talvez reduzir a complexidade do seu efeito aleatório).
    • Tenho certeza de que tais previsões fazem sentido, mas podem estar erradas, pois seriam a média em uma população dividida entre os dois resultados nessa proporção. Obviamente, no nível de observação individual, você só poderá ter um dos dois resultados.
    • 2

relate perguntas

  • Adicionar número de série para atividade de cópia ao blob

  • A fonte dinâmica do empacotador duplica artefatos

  • Selecione linhas por grupo com 1s consecutivos

  • Lista de chamada de API de gráfico subscritoSkus estados Privilégios insuficientes enquanto os privilégios são concedidos

  • Função para criar DFs separados com base no valor da coluna

Sidebar

Stats

  • Perguntas 205573
  • respostas 270741
  • best respostas 135370
  • utilizador 68524
  • Highest score
  • respostas
  • Marko Smith

    Vue 3: Erro na criação "Identificador esperado, mas encontrado 'import'" [duplicado]

    • 1 respostas
  • Marko Smith

    Por que esse código Java simples e pequeno roda 30x mais rápido em todas as JVMs Graal, mas não em nenhuma JVM Oracle?

    • 1 respostas
  • Marko Smith

    Qual é o propósito de `enum class` com um tipo subjacente especificado, mas sem enumeradores?

    • 1 respostas
  • Marko Smith

    Como faço para corrigir um erro MODULE_NOT_FOUND para um módulo que não importei manualmente?

    • 6 respostas
  • Marko Smith

    `(expression, lvalue) = rvalue` é uma atribuição válida em C ou C++? Por que alguns compiladores aceitam/rejeitam isso?

    • 3 respostas
  • Marko Smith

    Quando devo usar um std::inplace_vector em vez de um std::vector?

    • 3 respostas
  • Marko Smith

    Um programa vazio que não faz nada em C++ precisa de um heap de 204 KB, mas não em C

    • 1 respostas
  • Marko Smith

    PowerBI atualmente quebrado com BigQuery: problema de driver Simba com atualização do Windows

    • 2 respostas
  • Marko Smith

    AdMob: MobileAds.initialize() - "java.lang.Integer não pode ser convertido em java.lang.String" para alguns dispositivos

    • 1 respostas
  • Marko Smith

    Estou tentando fazer o jogo pacman usando apenas o módulo Turtle Random e Math

    • 1 respostas
  • Martin Hope
    Aleksandr Dubinsky Por que a correspondência de padrões com o switch no InetAddress falha com 'não cobre todos os valores de entrada possíveis'? 2024-12-23 06:56:21 +0800 CST
  • Martin Hope
    Phillip Borge Por que esse código Java simples e pequeno roda 30x mais rápido em todas as JVMs Graal, mas não em nenhuma JVM Oracle? 2024-12-12 20:46:46 +0800 CST
  • Martin Hope
    Oodini Qual é o propósito de `enum class` com um tipo subjacente especificado, mas sem enumeradores? 2024-12-12 06:27:11 +0800 CST
  • Martin Hope
    sleeptightAnsiC `(expression, lvalue) = rvalue` é uma atribuição válida em C ou C++? Por que alguns compiladores aceitam/rejeitam isso? 2024-11-09 07:18:53 +0800 CST
  • Martin Hope
    The Mad Gamer Quando devo usar um std::inplace_vector em vez de um std::vector? 2024-10-29 23:01:00 +0800 CST
  • Martin Hope
    Chad Feller O ponto e vírgula agora é opcional em condicionais bash com [[ .. ]] na versão 5.2? 2024-10-21 05:50:33 +0800 CST
  • Martin Hope
    Wrench Por que um traço duplo (--) faz com que esta cláusula MariaDB seja avaliada como verdadeira? 2024-05-05 13:37:20 +0800 CST
  • Martin Hope
    Waket Zheng Por que `dict(id=1, **{'id': 2})` às vezes gera `KeyError: 'id'` em vez de um TypeError? 2024-05-04 14:19:19 +0800 CST
  • Martin Hope
    user924 AdMob: MobileAds.initialize() - "java.lang.Integer não pode ser convertido em java.lang.String" para alguns dispositivos 2024-03-20 03:12:31 +0800 CST
  • Martin Hope
    MarkB Por que o GCC gera código que executa condicionalmente uma implementação SIMD? 2024-02-17 06:17:14 +0800 CST

Hot tag

python javascript c++ c# java typescript sql reactjs html

Explore

  • Início
  • Perguntas
    • Recentes
    • Highest score
  • tag
  • help

Footer

AskOverflow.Dev

About Us

  • About Us
  • Contact Us

Legal Stuff

  • Privacy Policy

Language

  • Pt
  • Server
  • Unix

© 2023 AskOverflow.DEV All Rights Reserve