Estou procurando uma maneira agradável e informativa de visualizar um modelo misto em que a variável de resposta e a variável preditora sejam binárias.
m_0 <- glmer(Preselected_0 ~ N_G_altnt_Q_YN + (N_G_altnt_Q_YN | File / Person_anon), family = "binomial",
data = df)
O gráfico que recebo ao usar plot_model
é este:
library(sjPlot)
plot_model(m_0, type = "eff", terms = c("N_G_altnt_Q_YN"), #pred.type = "fe", ci.lvl = .68, line.size = 1.2,
title = ""
)
O tipo de gráfico que eu gostaria de obter é este: ou, se isso não for possível ou aconselhável com o preditor binário, alguma outra visualização que seja visualmente mais atraente e informativa - qualquer ajuda será apreciada!
Dados:
df <- structure(list(N_G_altnt_Q_YN = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L), levels = c("0", "1"), class = "factor"),
Preselected_0 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L), levels = c("YES", "NO"
), class = "factor"), File = c("F01", "F01", "F01", "F01",
"F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01",
"F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01", "F01",
"F01", "F01", "F01", "F01", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04", "F04",
"F04", "F04", "F04", "F04", "F04", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07", "F07",
"F07", "F07", "F07", "F07", "F08", "F08", "F08", "F08", "F08",
"F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08",
"F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08",
"F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08", "F08",
"F08", "F08", "F08", "F08", "F08", "F08", "F08", "F12", "F12",
"F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12",
"F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12",
"F12", "F12", "F12", "F12", "F12", "F12", "F12", "F12", "F16",
"F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16",
"F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16", "F16",
"F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18",
"F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18", "F18",
"F18", "F18", "F18", "F18", "F18", "F20", "F20", "F20", "F20",
"F20", "F20", "F20", "F20", "F20", "F20", "F20", "F20", "F20",
"F20", "F20", "F20", "F20", "F20", "F20", "F22", "F22", "F22",
"F22", "F22", "F22", "F22", "F22", "F22", "F22", "F23", "F23",
"F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23",
"F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23",
"F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23",
"F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23", "F23",
"F23", "F19", "F19", "F19", "F19", "F19", "F19", "F19", "F19",
"F19", "F19", "F19", "F16"), Person_anon = c("GGGGGGGGGGGGGGGl",
"IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt",
"IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "GGGGGGGGGGGGGGGl", "IIIIIIIIIIIIt",
"IIIIIIIIIIIIt", "KKKKKKKKKKr", "IIIIIIIIIIIIt", "KKKKKKKKKKr",
"IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "GGGGGGGGGGGGGGGl",
"IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "KKKKKKKKKKr", "IIIIIIIIIIIIt",
"IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt", "IIIIIIIIIIIIt",
"IIIIIIIIIIIIt", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "CCCCCCCCCCx",
"DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "DDDDDDDDDDDDe", "CCCCCCCCCCx",
"CCCCCCCCCCx", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn",
"DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe",
"AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "CCCCCCCCCCx",
"CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"CCCCCCCCCCx", "DDDDDDDDDDDDe", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"CCCCCCCCCCx", "AAAAAAAAAAAAAn", "CCCCCCCCCCx", "DDDDDDDDDDDDe",
"CCCCCCCCCCx", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe",
"CCCCCCCCCCx", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn",
"CCCCCCCCCCx", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "CCCCCCCCCCx", "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn",
"LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn",
"AAAAAAAAAAAAAn", "CCCCCCCCCCx", "CCCCCCCCCCx", "CCCCCCCCCCx",
"AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "CCCCCCCCCCx",
"AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"CCCCCCCCCCx", "CCCCCCCCCCx", "LLLLLLLLLLLLLn", "AAAAAAAAAAAAAn",
"CCCCCCCCCCx", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn", "AAAAAAAAAAAAAn",
"AAAAAAAAAAAAAn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo",
"LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLo", "NNNNNNNNNNNr",
"NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr",
"NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr",
"LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "NNNNNNNNNNNr", "LLLLLLLLLLLLLo",
"NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "NNNNNNNNNNNr",
"NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr",
"LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLn",
"LLLLLLLLLLLLLo", "NNNNNNNNNNNr", "NNNNNNNNNNNr", "LLLLLLLLLLLLLn",
"LLLLLLLLLLLLLn", "NNNNNNNNNNNr", "LLLLLLLLLLLLLn", "NNNNNNNNNNNr",
"NNNNNNNNNNNr", "LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "CCCCCCCCCCx",
"LLLLLLLLLLLLLo", "DDDDDDDDDDDDe", "CCCCCCCCCCx", "LLLLLLLLLLLLLo",
"LLLLLLLLLLLLLo", "LLLLLLLLLLLLLo", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "CCCCCCCCCCx",
"CCCCCCCCCCx", "CCCCCCCCCCx", "CCCCCCCCCCx", "DDDDDDDDDDDDe",
"CCCCCCCCCCx", "CCCCCCCCCCx", "DDDDDDDDDDDDe", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "DDDDDDDDDDDDe", "LLLLLLLLLLLLLo", "DDDDDDDDDDDDe",
"DDDDDDDDDDDDe", "CCCCCCCCCCx", "CCCCCCCCCCx", "AAAAAAAAAAo",
"AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo",
"AAAAAAAAAAo", "CCCCCCCCCCx", "CCCCCCCCCCCCCCx", "AAAAAAAAAAo",
"AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo", "AAAAAAAAAAo",
"AAAAAAAAAAo", "CCCCCCCCCCCCCCx", "AAAAAAAAAAo", "CCCCCCCCCCCCCCx",
"SSSSSSSSSSd", "SSSSSSSSSSd", "GGGGGGGGGGGGGi", "SSSSSSSSSSd",
"SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd", "SSSSSSSSSSd",
"AAAAAAAAAAo", "SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd",
"SSSSSSSSSSd", "SSSSSSSSSSd", "AAAAAAAAAAo", "SSSSSSSSSSd",
"GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi",
"GGGGGGGGGGGGGi", "GGGGGGGGGGGGGi", "SSSSSSSSSSd", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"JJJJJJJJJJJJy", "JJJJJJJJJJJJy", "JJJJJJJJJJJJy", "JJJJJJJJJJJJJJJJJJd",
"JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJy",
"JJJJJJJJJJJJJJJJJJd", "JJJJJJJJJJJJy", "JJJJJJJJJJJJy",
"LLLLLLLLLLn", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "OOOOOOOOOOOOm",
"LLLLLLLLLLn", "CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "LLLLLLLLLLn", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "LLLLLLLLLLn", "LLLLLLLLLLn", "LLLLLLLLLLn",
"OOOOOOOOOOOOm", "CCCCCCCCCCCCd", "LLLLLLLLLLn", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "OOOOOOOOOOOOm", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "CCCCCCCCCCCCd",
"CCCCCCCCCCCCd", "CCCCCCCCCCCCd", "LLLLLLLLLLn", "LLLLLLLLLLn",
"LLLLLLLLLLn", "LLLLLLLLLLn", "OOOOOOOOOOOOm", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl", "LLLLLLLLLLLLLLLLLLLl",
"LLLLLLLLLLLLLLLLLLLl", "AAAAAAAAAAo")), row.names = c(NA,
-332L), class = c("tbl_df", "tbl", "data.frame"))
Você pode fazer isso facilmente ajustando seu resultado categórico como um efeito fictício codificado 0/1 real. Isso é o que acontece de qualquer maneira dentro de qualquer rotina de ajuste, mas são os
predict
métodos subsequentes que não saberão o que fazer com onde queremos ir:Não vou mostrar isso aqui, mas isso não muda nada nas estimativas fixas ou aleatórias do seu modelo, simplesmente removeu o tipo de fator do preditor. Se você tivesse mais de dois níveis nesse fator, teria que criar mais manequins, mas o mesmo princípio se aplica (e, novamente, é isso que
model.matrix
acontecerá dentro de qualquer modelo).A grande vantagem é que agora podemos usar
predict
outros valores além de 0/1 - mesmo fora desses limites, se você quiser, embora claramente isso não fizesse sentido.Fizemos algumas coisas na última chamada: solicitamos médias previstas de efeito fixo e erros padrão em todo o intervalo de previsão e calculamos um intervalo de confiança de 95% do tipo Wald usando-os. Finalmente, tudo foi transformado da escala logarítmica de probabilidades para a escala de resposta (probabilidade). Você precisa executar essa etapa por último porque não pode calcular esse intervalo de confiança diretamente na escala de resposta.
Agora só falta produzir um enredo. Vou me ater às rotinas básicas em vez de, por exemplo
ggplot2
:Algumas notas finais: