我们有一个非常活跃的数据库服务器,上面运行着各种各样的应用程序。其中最繁忙的两个是一个全天进行文档扫描和工作流处理的 Laserfiche 数据库(平均大约 2800 个批处理请求/秒)和一个路由电子邮件的黑莓服务器应用程序。还有大约 25 个其他小型应用程序数据库。
我们是一个政府机构,所以我们只获得了单个数据库服务器许可证的预算。
最近,我们获得了一个 SAN 来解决磁盘争用问题。
所以目前我们在它自己的磁盘上运行了 TempDB(raid 1 镜像对),并且我们已经将事务日志和数据文件移动到了 SAN 上。事务日志放在一个逻辑位置,数据文件放在另一个位置。物理上它是相同的阵列,但它是一个由 14 个总主轴(磁盘)组成的阵列,采用 raid 1+0 配置。
一个非常强大的 SAN - 事情运行得更好。队列长度减半。
就在今天,我们还获得了另一种选择。如果我们当前在文件服务器上需要它,我们也可以有一个 4 磁盘阵列。我知道通常建议在两个单独的阵列上使用 MDF 和 LDF,但在我们的情况下,这样做的唯一方法是将数据或事务日志从 SAN 移到配置为 Raid 5 的 4 磁盘阵列上。请记住,它们是当前位于单独的逻辑卷中,但共享相同的物理阵列。
从臀部射击我觉得将 MDF 和 LDF 放在一个 14 轴 raid 1+0 阵列上可能与将它们与一个在 4 轴 raid 5 阵列上分开一样好。但是,我不会在这里问我是否是磁盘逻辑专家。两个选项都使用基本相同的 15k SAS 磁盘 - 即每个主轴基本相同。
所以,本质上问题是。通过将数据或日志移动到它自己的 4 轴 raid 5 阵列,在配置为 raid 1+0 的单个 14 轴阵列上具有 MDF / LDF 是否会得到任何显着改善(或根本没有)?
想法?
更新信息:
我还要注意,当前日志卷上的平均队列长度始终保持在 0.55 左右。数据量上的平均队列长度很少超过 0.01(通常为 0.00)
sys.dm_io_virtual_file_stats 查询结果:
<table>
<tr>
<td>database
id</td>
<td>Volume</td>
<td>io_stall_read_ms</td>
<td>num_of_reads</td>
<td>avg_read_stall_ms</td>
<td>io_stall_write_ms</td>
<td>num_of_writes</td>
<td>avg_write_stall_ms</td>
<td>io_stalls</td>
<td>total_io</td>
<td>avg_io_stall_ms</td>
</tr>
<tr>
<td>25</td>
<td>h</td>
<td>175086</td>
<td>1411</td>
<td>124</td>
<td>69</td>
<td>41</td>
<td>1.6</td>
<td>175155</td>
<td>1452</td>
<td>120.5</td>
</tr>
<tr>
<td>16</td>
<td>h</td>
<td>54691</td>
<td>748</td>
<td>73</td>
<td>34</td>
<td>23</td>
<td>1.4</td>
<td>54725</td>
<td>771</td>
<td>70.9</td>
</tr>
<tr>
<td>41</td>
<td>h</td>
<td>192255</td>
<td>982</td>
<td>195.6</td>
<td>5232</td>
<td>2142</td>
<td>2.4</td>
<td>197487</td>
<td>3124</td>
<td>63.2</td>
</tr>
<tr>
<td>24</td>
<td>h</td>
<td>8616</td>
<td>178</td>
<td>48.1</td>
<td>55</td>
<td>22</td>
<td>2.4</td>
<td>8671</td>
<td>200</td>
<td>43.1</td>
</tr>
<tr>
<td>29</td>
<td>h</td>
<td>54617</td>
<td>1247</td>
<td>43.8</td>
<td>71</td>
<td>41</td>
<td>1.7</td>
<td>54688</td>
<td>1288</td>
<td>42.4</td>
</tr>
<tr>
<td>40</td>
<td>h</td>
<td>132664</td>
<td>3158</td>
<td>42</td>
<td>184</td>
<td>85</td>
<td>2.1</td>
<td>132848</td>
<td>3243</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>h</td>
<td>26556</td>
<td>763</td>
<td>34.8</td>
<td>33</td>
<td>23</td>
<td>1.4</td>
<td>26589</td>
<td>786</td>
<td>33.8</td>
</tr>
<tr>
<td>37</td>
<td>h</td>
<td>6943152</td>
<td>500214</td>
<td>13.9</td>
<td>310706380</td>
<td>9083273</td>
<td>34.2</td>
<td>317649532</td>
<td>9583487</td>
<td>33.1</td>
</tr>
<tr>
<td>32</td>
<td>h</td>
<td>14832</td>
<td>426</td>
<td>34.7</td>
<td>42</td>
<td>38</td>
<td>1.1</td>
<td>14874</td>
<td>464</td>
<td>32</td>
</tr>
<tr>
<td>43</td>
<td>h</td>
<td>46937</td>
<td>947</td>
<td>49.5</td>
<td>1203</td>
<td>844</td>
<td>1.4</td>
<td>48140</td>
<td>1791</td>
<td>26.9</td>
</tr>
<tr>
<td>17</td>
<td>h</td>
<td>23166</td>
<td>786</td>
<td>29.4</td>
<td>260</td>
<td>125</td>
<td>2.1</td>
<td>23426</td>
<td>911</td>
<td>25.7</td>
</tr>
<tr>
<td>44</td>
<td>h</td>
<td>65563</td>
<td>2968</td>
<td>22.1</td>
<td>451</td>
<td>334</td>
<td>1.3</td>
<td>66014</td>
<td>3302</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>h</td>
<td>73622</td>
<td>3325</td>
<td>22.1</td>
<td>547</td>
<td>483</td>
<td>1.1</td>
<td>74169</td>
<td>3808</td>
<td>19.5</td>
</tr>
<tr>
<td>31</td>
<td>h</td>
<td>19557</td>
<td>978</td>
<td>20</td>
<td>218</td>
<td>128</td>
<td>1.7</td>
<td>19775</td>
<td>1106</td>
<td>17.9</td>
</tr>
<tr>
<td>13</td>
<td>h</td>
<td>5238308</td>
<td>176396</td>
<td>29.7</td>
<td>70537264</td>
<td>4109175</td>
<td>17.2</td>
<td>75775572</td>
<td>4285571</td>
<td>17.7</td>
</tr>
<tr>
<td>26</td>
<td>h</td>
<td>849303</td>
<td>57475</td>
<td>14.8</td>
<td>496337</td>
<td>19098</td>
<td>26</td>
<td>1345640</td>
<td>76573</td>
<td>17.6</td>
</tr>
<tr>
<td>28</td>
<td>h</td>
<td>12707</td>
<td>799</td>
<td>15.9</td>
<td>103</td>
<td>62</td>
<td>1.6</td>
<td>12810</td>
<td>861</td>
<td>14.9</td>
</tr>
<tr>
<td>42</td>
<td>h</td>
<td>28630</td>
<td>1233</td>
<td>23.2</td>
<td>1139</td>
<td>883</td>
<td>1.3</td>
<td>29769</td>
<td>2116</td>
<td>14.1</td>
</tr>
<tr>
<td>14</td>
<td>h</td>
<td>91425</td>
<td>5480</td>
<td>16.7</td>
<td>3762</td>
<td>2470</td>
<td>1.5</td>
<td>95187</td>
<td>7950</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>h</td>
<td>8253</td>
<td>546</td>
<td>15.1</td>
<td>193</td>
<td>174</td>
<td>1.1</td>
<td>8446</td>
<td>720</td>
<td>11.7</td>
</tr>
<tr>
<td>12</td>
<td>h</td>
<td>33008</td>
<td>1852</td>
<td>17.8</td>
<td>2179</td>
<td>1335</td>
<td>1.6</td>
<td>35187</td>
<td>3187</td>
<td>11</td>
</tr>
<tr>
<td>36</td>
<td>h</td>
<td>4322</td>
<td>470</td>
<td>9.2</td>
<td>150</td>
<td>119</td>
<td>1.3</td>
<td>4472</td>
<td>589</td>
<td>7.6</td>
</tr>
<tr>
<td>6</td>
<td>h</td>
<td>537</td>
<td>61</td>
<td>8.7</td>
<td>21</td>
<td>22</td>
<td>0.9</td>
<td>558</td>
<td>83</td>
<td>6.6</td>
</tr>
<tr>
<td>33</td>
<td>h</td>
<td>4172</td>
<td>585</td>
<td>7.1</td>
<td>63</td>
<td>59</td>
<td>1.1</td>
<td>4235</td>
<td>644</td>
<td>6.6</td>
</tr>
<tr>
<td>30</td>
<td>h</td>
<td>633</td>
<td>71</td>
<td>8.8</td>
<td>57</td>
<td>38</td>
<td>1.5</td>
<td>690</td>
<td>109</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>h</td>
<td>479</td>
<td>65</td>
<td>7.3</td>
<td>63</td>
<td>22</td>
<td>2.7</td>
<td>542</td>
<td>87</td>
<td>6.2</td>
</tr>
<tr>
<td>38</td>
<td>h</td>
<td>635</td>
<td>70</td>
<td>8.9</td>
<td>54</td>
<td>40</td>
<td>1.3</td>
<td>689</td>
<td>110</td>
<td>6.2</td>
</tr>
<tr>
<td>19</td>
<td>h</td>
<td>867</td>
<td>125</td>
<td>6.9</td>
<td>133</td>
<td>40</td>
<td>3.2</td>
<td>1000</td>
<td>165</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>h</td>
<td>2157</td>
<td>342</td>
<td>6.3</td>
<td>107</td>
<td>37</td>
<td>2.8</td>
<td>2264</td>
<td>379</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>h</td>
<td>655</td>
<td>84</td>
<td>7.7</td>
<td>109</td>
<td>44</td>
<td>2.4</td>
<td>764</td>
<td>128</td>
<td>5.9</td>
</tr>
<tr>
<td>9</td>
<td>h</td>
<td>22017</td>
<td>1269</td>
<td>17.3</td>
<td>12187</td>
<td>4510</td>
<td>2.7</td>
<td>34204</td>
<td>5779</td>
<td>5.9</td>
</tr>
<tr>
<td>11</td>
<td>h</td>
<td>1641</td>
<td>226</td>
<td>7.2</td>
<td>158</td>
<td>94</td>
<td>1.7</td>
<td>1799</td>
<td>320</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>h</td>
<td>556</td>
<td>66</td>
<td>8.3</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>596</td>
<td>106</td>
<td>5.6</td>
</tr>
<tr>
<td>20</td>
<td>t</td>
<td>639</td>
<td>90</td>
<td>7</td>
<td>118</td>
<td>43</td>
<td>2.7</td>
<td>757</td>
<td>133</td>
<td>5.6</td>
</tr>
<tr>
<td>24</td>
<td>t</td>
<td>1031</td>
<td>167</td>
<td>6.1</td>
<td>67</td>
<td>29</td>
<td>2.2</td>
<td>1098</td>
<td>196</td>
<td>5.6</td>
</tr>
<tr>
<td>25</td>
<td>t</td>
<td>1269</td>
<td>210</td>
<td>6</td>
<td>111</td>
<td>47</td>
<td>2.3</td>
<td>1380</td>
<td>257</td>
<td>5.3</td>
</tr>
<tr>
<td>29</td>
<td>t</td>
<td>680</td>
<td>94</td>
<td>7.2</td>
<td>113</td>
<td>54</td>
<td>2.1</td>
<td>793</td>
<td>148</td>
<td>5.3</td>
</tr>
<tr>
<td>30</td>
<td>t</td>
<td>233</td>
<td>25</td>
<td>9</td>
<td>145</td>
<td>47</td>
<td>3</td>
<td>378</td>
<td>72</td>
<td>5.2</td>
</tr>
<tr>
<td>13</td>
<td>t</td>
<td>11947937</td>
<td>55092</td>
<td>216.9</td>
<td>163346886</td>
<td>33789532</td>
<td>4.8</td>
<td>175294823</td>
<td>33844624</td>
<td>5.2</td>
</tr>
<tr>
<td>15</td>
<td>t</td>
<td>693</td>
<td>119</td>
<td>5.8</td>
<td>82</td>
<td>29</td>
<td>2.7</td>
<td>775</td>
<td>148</td>
<td>5.2</td>
</tr>
<tr>
<td>16</td>
<td>t</td>
<td>731</td>
<td>119</td>
<td>6.1</td>
<td>48</td>
<td>29</td>
<td>1.6</td>
<td>779</td>
<td>148</td>
<td>5.2</td>
</tr>
<tr>
<td>29</td>
<td>h</td>
<td>176</td>
<td>34</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>177</td>
<td>35</td>
<td>4.9</td>
</tr>
<tr>
<td>18</td>
<td>t</td>
<td>305</td>
<td>44</td>
<td>6.8</td>
<td>165</td>
<td>52</td>
<td>3.1</td>
<td>470</td>
<td>96</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>500</td>
<td>75</td>
<td>6.6</td>
<td>60</td>
<td>40</td>
<td>1.5</td>
<td>560</td>
<td>115</td>
<td>4.8</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>462</td>
<td>74</td>
<td>6.2</td>
<td>118</td>
<td>48</td>
<td>2.4</td>
<td>580</td>
<td>122</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>t</td>
<td>294</td>
<td>33</td>
<td>8.6</td>
<td>80</td>
<td>47</td>
<td>1.7</td>
<td>374</td>
<td>80</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>h</td>
<td>520</td>
<td>109</td>
<td>4.7</td>
<td>3</td>
<td>4</td>
<td>0.6</td>
<td>523</td>
<td>113</td>
<td>4.6</td>
</tr>
<tr>
<td>39</td>
<td>h</td>
<td>394</td>
<td>62</td>
<td>6.3</td>
<td>77</td>
<td>40</td>
<td>1.9</td>
<td>471</td>
<td>102</td>
<td>4.6</td>
</tr>
<tr>
<td>39</td>
<td>t</td>
<td>124</td>
<td>16</td>
<td>7.3</td>
<td>165</td>
<td>47</td>
<td>3.4</td>
<td>289</td>
<td>63</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>459</td>
<td>78</td>
<td>5.8</td>
<td>93</td>
<td>43</td>
<td>2.1</td>
<td>552</td>
<td>121</td>
<td>4.5</td>
</tr>
<tr>
<td>41</td>
<td>t</td>
<td>8295</td>
<td>470</td>
<td>17.6</td>
<td>4035</td>
<td>2359</td>
<td>1.7</td>
<td>12330</td>
<td>2829</td>
<td>4.4</td>
</tr>
<tr>
<td>31</td>
<td>t</td>
<td>637</td>
<td>91</td>
<td>6.9</td>
<td>170</td>
<td>95</td>
<td>1.8</td>
<td>807</td>
<td>186</td>
<td>4.3</td>
</tr>
<tr>
<td>7</td>
<td>t</td>
<td>242</td>
<td>29</td>
<td>8.1</td>
<td>80</td>
<td>47</td>
<td>1.7</td>
<td>322</td>
<td>76</td>
<td>4.2</td>
</tr>
<tr>
<td>22</td>
<td>h</td>
<td>298</td>
<td>80</td>
<td>3.7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>298</td>
<td>81</td>
<td>3.6</td>
</tr>
<tr>
<td>38</td>
<td>t</td>
<td>139</td>
<td>22</td>
<td>6</td>
<td>115</td>
<td>47</td>
<td>2.4</td>
<td>254</td>
<td>69</td>
<td>3.6</td>
</tr>
<tr>
<td>40</td>
<td>t</td>
<td>1016</td>
<td>159</td>
<td>6.4</td>
<td>388</td>
<td>236</td>
<td>1.6</td>
<td>1404</td>
<td>395</td>
<td>3.5</td>
</tr>
<tr>
<td>22</td>
<td>t</td>
<td>76</td>
<td>18</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>1.2</td>
<td>83</td>
<td>23</td>
<td>3.5</td>
</tr>
<tr>
<td>44</td>
<td>t</td>
<td>873</td>
<td>133</td>
<td>6.5</td>
<td>479</td>
<td>263</td>
<td>1.8</td>
<td>1352</td>
<td>396</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>10565</td>
<td>2057</td>
<td>5.1</td>
<td>2840</td>
<td>2061</td>
<td>1.4</td>
<td>13405</td>
<td>4118</td>
<td>3.3</td>
</tr>
<tr>
<td>32</td>
<td>t</td>
<td>94</td>
<td>18</td>
<td>4.9</td>
<td>72</td>
<td>33</td>
<td>2.1</td>
<td>166</td>
<td>51</td>
<td>3.2</td>
</tr>
<tr>
<td>19</td>
<td>t</td>
<td>116</td>
<td>16</td>
<td>6.8</td>
<td>116</td>
<td>60</td>
<td>1.9</td>
<td>232</td>
<td>76</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>t</td>
<td>144</td>
<td>18</td>
<td>7.6</td>
<td>181</td>
<td>91</td>
<td>2</td>
<td>325</td>
<td>109</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>t</td>
<td>69</td>
<td>12</td>
<td>5.3</td>
<td>48</td>
<td>29</td>
<td>1.6</td>
<td>117</td>
<td>41</td>
<td>2.8</td>
</tr>
<tr>
<td>6</td>
<td>t</td>
<td>69</td>
<td>11</td>
<td>5.8</td>
<td>40</td>
<td>29</td>
<td>1.3</td>
<td>109</td>
<td>40</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>h</td>
<td>941</td>
<td>181</td>
<td>5.2</td>
<td>368</td>
<td>356</td>
<td>1</td>
<td>1309</td>
<td>537</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>t</td>
<td>5034</td>
<td>394</td>
<td>12.7</td>
<td>9584</td>
<td>5599</td>
<td>1.7</td>
<td>14618</td>
<td>5993</td>
<td>2.4</td>
</tr>
<tr>
<td>17</td>
<td>t</td>
<td>1335</td>
<td>213</td>
<td>6.2</td>
<td>1293</td>
<td>1119</td>
<td>1.2</td>
<td>2628</td>
<td>1332</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>h</td>
<td>21</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>13</td>
<td>1.1</td>
<td>36</td>
<td>19</td>
<td>1.8</td>
</tr>
<tr>
<td>34</td>
<td>h</td>
<td>1140</td>
<td>132</td>
<td>8.6</td>
<td>4146</td>
<td>2921</td>
<td>1.4</td>
<td>5286</td>
<td>3053</td>
<td>1.7</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>714</td>
<td>111</td>
<td>6.4</td>
<td>10175</td>
<td>6589</td>
<td>1.5</td>
<td>10889</td>
<td>6700</td>
<td>1.6</td>
</tr>
<tr>
<td>42</td>
<td>t</td>
<td>949</td>
<td>139</td>
<td>6.8</td>
<td>3420</td>
<td>2671</td>
<td>1.3</td>
<td>4369</td>
<td>2810</td>
<td>1.6</td>
</tr>
<tr>
<td>37</td>
<td>t</td>
<td>4006</td>
<td>489</td>
<td>8.2</td>
<td>15548682</td>
<td>9892846</td>
<td>1.6</td>
<td>15552688</td>
<td>9893335</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>164348</td>
<td>106669</td>
<td>1.5</td>
<td>178498</td>
<td>121970</td>
<td>1.5</td>
<td>342846</td>
<td>228639</td>
<td>1.5</td>
</tr>
<tr>
<td>28</td>
<td>t</td>
<td>1305</td>
<td>194</td>
<td>6.7</td>
<td>7006</td>
<td>5797</td>
<td>1.2</td>
<td>8311</td>
<td>5991</td>
<td>1.4</td>
</tr>
<tr>
<td>45</td>
<td>h</td>
<td>123</td>
<td>93</td>
<td>1.3</td>
<td>510</td>
<td>373</td>
<td>1.4</td>
<td>633</td>
<td>466</td>
<td>1.4</td>
</tr>
<tr>
<td>43</td>
<td>t</td>
<td>1243</td>
<td>130</td>
<td>9.5</td>
<td>13330</td>
<td>10836</td>
<td>1.2</td>
<td>14573</td>
<td>10966</td>
<td>1.3</td>
</tr>
<tr>
<td>35</td>
<td>t</td>
<td>329</td>
<td>47</td>
<td>6.9</td>
<td>25471</td>
<td>19582</td>
<td>1.3</td>
<td>25800</td>
<td>19629</td>
<td>1.3</td>
</tr>
<tr>
<td>27</td>
<td>t</td>
<td>1866</td>
<td>294</td>
<td>6.3</td>
<td>12196</td>
<td>10243</td>
<td>1.2</td>
<td>14062</td>
<td>10537</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>t</td>
<td>13789</td>
<td>2852</td>
<td>4.8</td>
<td>28818</td>
<td>29040</td>
<td>1</td>
<td>42607</td>
<td>31892</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>t</td>
<td>511</td>
<td>67</td>
<td>7.5</td>
<td>158330</td>
<td>130742</td>
<td>1.2</td>
<td>158841</td>
<td>130809</td>
<td>1.2</td>
</tr>
<tr>
<td>34</td>
<td>t</td>
<td>99</td>
<td>13</td>
<td>7.1</td>
<td>134764</td>
<td>112984</td>
<td>1.2</td>
<td>134863</td>
<td>112997</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>23</td>
<td>147</td>
<td>0.2</td>
<td>17980</td>
<td>16879</td>
<td>1.1</td>
<td>18003</td>
<td>17026</td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>h</td>
<td>54</td>
<td>10</td>
<td>4.9</td>
<td>1845</td>
<td>1761</td>
<td>1</td>
<td>1899</td>
<td>1771</td>
<td>1.1</td>
</tr>
<tr>
<td>33</td>
<td>t</td>
<td>220</td>
<td>33</td>
<td>6.5</td>
<td>746</td>
<td>980</td>
<td>0.8</td>
<td>966</td>
<td>1013</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>t</td>
<td>199</td>
<td>27</td>
<td>7.1</td>
<td>26330</td>
<td>25429</td>
<td>1</td>
<td>26529</td>
<td>25456</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>t</td>
<td>5</td>
<td>8</td>
<td>0.6</td>
<td>6306</td>
<td>6142</td>
<td>1</td>
<td>6311</td>
<td>6150</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>t</td>
<td>2969</td>
<td>348</td>
<td>8.5</td>
<td>64557</td>
<td>70819</td>
<td>0.9</td>
<td>67526</td>
<td>71167</td>
<td>0.9</td>
</tr>
</table>
不幸的是,这是一个很大的“它取决于”。由于您拥有如此多的应用程序,可能具有截然不同的 IO 配置文件,共享相同的实例/服务器和阵列,从而使情况更加复杂。
Usually you would want to isolate data and log files as the IO profiles are polar opposite. Typically weighted toward random read for data files and sequential write for logs. The log element is somewhat different in your case as you have multiple log files.
I'd start by getting an understanding of the IO the databases are consuming relative to each other.
If you can format the output of this into a readable form and add to your question, someone can make a more educated guess at the best use of your 18 disks.
If I was doing this blind, I'd probably start off allocating:
Assuming that:
Edit: Following update to question regarding queue lengths:
Queue length counters are oft misunderstood when evaluating SQL Server performance. One of the best analogies I've come across is from a Simon Sabin blog post, Disk Queue Length - a bit like buying Guiness.
In your case, they are so low that you might get by with half the spindles. Would still be interesting to see the other stats from the above query though.
First the tempdb needs to have RAID under it. When that disk fails your SQL Server will come to a stop until you replace the failed disk and get it back up and running. If no one else is using the 4 disk RAID 5 you could reconfigure that as RAID 10 and use that for the logs or the data depending on which has the lower IO needs, and leave the higher IO one on the bigger RAID set.
This all requires a good looking at the perfmon numbers that you are getting for each disk to see which one should go where.