我对 Julia 和 Julia DataFrames 还不熟悉。我的理解是,DataFrames 不支持 MultiIndexing,这通常不会造成太大问题,但将一些 Python 习惯转换为 Julia 却很困难。我想知道如何按列加载和子选择特征,如下例所示。
import numpy as np
import pandas as pd
#generating sample data
nsmpls = 10
smpls = [f'smpl{j}' for j in range(nsmpls)]
nfeats = 5
feats = [f'feat{j}' for j in range(nfeats)]
data = np.random.rand(nfeats, nsmpls)
countries = ['France'] * 2 + ['UK'] * 3 + ['US'] * 5
df = pd.DataFrame(data, index=feats, columns=pd.MultiIndex.from_tuples(zip(countries, smpls)))
df.to_csv('./data.tsv', sep='\t')
#---------------------------------------------------------------------
#loading dataset
df = pd.read_csv('./data.tsv', sep='\t', index_col=0, header=[0,1])
#extracting subset
dg = df.xs('France', level=0, axis=1)
print(dg.shape)
#iterating
for country, group in df.groupby(level=0, axis=1):
print('#samples: {}'.format(group.shape[1]))
像这样吗?
默认情况下,DataFrames 会将数字添加到类似的列名中,例如:France、France_1 等,因此我选择了所有包含“France”的列。