AskOverflow.Dev

AskOverflow.Dev Logo AskOverflow.Dev Logo

AskOverflow.Dev Navigation

  • Início
  • system&network
  • Ubuntu
  • Unix
  • DBA
  • Computer
  • Coding
  • LangChain

Mobile menu

Close
  • Início
  • system&network
    • Recentes
    • Highest score
    • tags
  • Ubuntu
    • Recentes
    • Highest score
    • tags
  • Unix
    • Recentes
    • tags
  • DBA
    • Recentes
    • tags
  • Computer
    • Recentes
    • tags
  • Coding
    • Recentes
    • tags
Início / dba / Perguntas / 87288
Accepted
Hannah Vernon
Hannah Vernon
Asked: 2014-12-31 13:06:46 +0800 CST2014-12-31 13:06:46 +0800 CST 2014-12-31 13:06:46 +0800 CST

Qual é o método mais eficiente de realizar o teste FIZZBUZZ no SQL Server?

  • 772

Existe um método mais eficiente de obter uma lista de números de 1 a 49 com uma coluna contendo as palavras FIZZquando o número pode ser dividido igualmente por 3, BUZZquando o número pode ser dividido igualmente por 5 e FIZZBUZZquando o número pode ser dividido igualmente por 3 e 5?

Minhas tentativas são (CUIDADO, isso irá esvaziar seu cache de procedimento, então NÃO EXECUTAR EM UMA CAIXA DE PRODUÇÃO):

DBCC FREEPROCCACHE
GO
/*VARIANT1*/
;WITH t AS (
    SELECT RowNum = ROW_NUMBER() OVER (ORDER BY o.object_id)
    FROM sys.objects o
)
SELECT t.RowNum
    , CASE WHEN ((t.RowNum % 3) + (t.RowNum % 5)) = 0  THEN 'FIZZBUZZ' 
    ELSE 
        CASE WHEN t.RowNum % 3 = 0 THEN 'FIZZ' 
        ELSE 
            CASE WHEN t.RowNum % 5 = 0 THEN 'BUZZ' 
            ELSE '' 
            END 
        END 
    END
FROM t
WHERE t.RowNum < 50;
GO 100

/*VARIANT2*/
DECLARE @t TABLE
(
    Num INT NOT NULL PRIMARY KEY CLUSTERED
);
INSERT INTO @t (Num)
SELECT ROW_NUMBER() OVER (ORDER BY o.object_id)
FROM sys.objects o;

SELECT t.Num
    , CASE WHEN ((t.Num % 3) + (t.Num % 5)) = 0  THEN 'FIZZBUZZ' 
    ELSE 
        CASE WHEN t.Num % 3 = 0 THEN 'FIZZ' 
        ELSE 
            CASE WHEN t.Num % 5 = 0 THEN 'BUZZ' 
            ELSE '' 
            END 
        END 
    END
FROM @t t
WHERE t.Num < 50;
GO 100

SELECT CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
    , MAX(deqs.execution_count)
    , SUM(deqs.total_worker_time)
    , AvgWorkerTime = SUM(deqs.total_worker_time) / MAX(deqs.execution_count)
FROM sys.dm_exec_query_stats deqs
CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) dest
WHERE (dest.text LIKE '%/*VARIANT1*/%'
    OR dest.text LIKE '%/*VARIANT2*/%')
    AND dest.text NOT LIKE '%/*NOT_ME!*/%'
GROUP BY CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
ORDER BY CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
/*NOT_ME!*/;

Modifiquei minhas tentativas de executar cada conjunto de instruções 100 vezes cada e, em seguida, mostrar os tempos registrados pelo SQL Server por meio de sys.dm_exec_query_stats.

Os resultados:

            Runs    total_time      average time
VARIANT1    100     42533           425
VARIANT2    100     138677          1386
sql-server
  • 9 9 respostas
  • 2820 Views

9 respostas

  • Voted
  1. Paul White
    2015-01-01T02:11:51+08:002015-01-01T02:11:51+08:00

    Usando uma tabela com otimização de memória do SQL Server 2014 e um procedimento compilado nativamente:

    -- Setup
    CREATE DATABASE InMem;
    GO
    ALTER DATABASE InMem
    ADD FILEGROUP FG1
    CONTAINS MEMORY_OPTIMIZED_DATA;
    GO
    ALTER DATABASE InMem
    ADD FILE 
    (
        NAME = 'FN1', 
        -- Change to suit your system
        FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\FN1.mod'
    )
    TO FILEGROUP FG1;
    GO
    USE InMem;
    GO
    CREATE TYPE dbo.FizzBuzzTableType AS TABLE 
    (
        n integer NOT NULL INDEX i,
        FizzBuzz varchar(8) NOT NULL
    ) WITH (MEMORY_OPTIMIZED = ON);
    GO
    

    Procedimento nativo:

    CREATE PROCEDURE dbo.FizzBuzz
    WITH 
        NATIVE_COMPILATION, 
        SCHEMABINDING, 
        EXECUTE AS OWNER
    AS
    BEGIN ATOMIC 
    WITH 
    (
        TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
        LANGUAGE = N'english'
    )   
        DECLARE @n AS dbo.FizzBuzzTableType;
    
        DECLARE @i integer = 1;
        WHILE @i < 50
        BEGIN
            IF @i % 15 = 0
            BEGIN
                INSERT @n (n, FizzBuzz) 
                VALUES (@i, 'FizzBuzz')
            END
            ELSE 
            BEGIN
                IF @i % 3 = 0
                BEGIN
                    INSERT @n (n, FizzBuzz)
                    VALUES (@i, 'Fizz')
                END
                ELSE 
                BEGIN
                    IF @i % 5 = 0
                    BEGIN
                        INSERT @n (n, FizzBuzz) 
                        VALUES (@i, 'Buzz')
                    END
                    ELSE
                    BEGIN
                        INSERT @n (n, FizzBuzz) 
                        VALUES (@i, CONVERT(varchar(8), @i));
                    END;
                END;
            END;
    
            SET @i += 1;
        END;
    
        SELECT
            N.n, 
            N.FizzBuzz
        FROM @n AS N
        ORDER BY
            N.n;
    END;
    

    Teste:

    SET NOCOUNT ON;
    PRINT SYSUTCDATETIME();
    GO
    DECLARE @T AS dbo.FizzBuzzTableType;
    
    INSERT @T (n, FizzBuzz)
    EXECUTE dbo.FizzBuzz;
    GO 100
    
    PRINT SYSUTCDATETIME();
    

    Resultados típicos:

    -- 95ms for 100 iterations, < 1ms each
    2014-12-31 10:07:13.7993355
    Beginning execution loop
    Batch execution completed 100 times.
    2014-12-31 10:07:13.8943409
    

    Isso grava a saída do procedimento em uma variável de tabela na memória, porque, caso contrário, estamos apenas testando a velocidade de exibição dos resultados no SSMS.

    Um milhão de linhas

    O procedimento nativo acima leva cerca de 12 segundos para ser executado em 1.000.000 de números. Existem todos os tipos de maneiras mais rápidas de fazer a mesma coisa no T-SQL. Um que escrevi antes segue. Ele é executado em cerca de 500 ms no meu laptop em um milhão de linhas quando o plano paralelo pretendido é alcançado:

    IF  OBJECT_ID(N'tempdb..#Result', N'U') IS NOT NULL
        DROP TABLE #Result;
    
    IF  OBJECT_ID(N'tempdb..#Thousand', N'U') IS NOT NULL
        DROP TABLE #Thousand;
    
    SET NOCOUNT ON;
    DECLARE @start datetime2(7) = SYSUTCDATETIME();
    
    CREATE TABLE #Thousand 
    (
        n integer NOT NULL,
    
        CONSTRAINT PK_#Thousand
        PRIMARY KEY CLUSTERED (n)
    );
    
    -- Add 1,000 rows numbered 0-999 to #Thousand
    WITH 
        L1 (n) AS
    (
        SELECT  V.n
        FROM    
        (
            VALUES  (0), (1), (2), (3), (4),
                    (5), (6), (7), (8), (9)
        ) AS V (n)
    ),
        Thousand AS
    (
        SELECT  n = 
            CONVERT
            (
                integer,
                ROW_NUMBER() OVER (
                ORDER BY (SELECT NULL))
                - 1
            )
        FROM L1
        CROSS JOIN L1 AS L2
        CROSS JOIN L1 AS L3
    )
    INSERT #Thousand (n)
    SELECT n
    FROM Thousand;
    
    -- To hold the Fizz Buzz output
    CREATE TABLE #Result 
    (
        n integer NOT NULL, 
        result varchar(8) NOT NULL
    );
    
    INSERT #Result
    SELECT 
        Million.n, 
        Million.result
    FROM
    (
        -- Modulo operation to encourage few outer rows parallelism
        SELECT  n
        FROM    #Thousand
        WHERE   n % 1 = 0
    ) AS T1
    -- Outer Apply to keep the Compute Scalar parallel
    OUTER APPLY
    (
        SELECT
            F2.n, 
            F2.result
        FROM #Thousand AS T2
        CROSS APPLY
        (
            -- Row numbers 1 to 1,000,000
            SELECT  (T1.n * 1000) + T2.n + 1
        ) AS F1 (n)
        CROSS APPLY
        (
            -- The Fizz Buzz bit
            SELECT
                F1.n,
                result =
                    CASE 
                        WHEN F1.n % 15 = 0 THEN 'FizzBuzz'
                        WHEN F1.n % 3 = 0 THEN 'Buzz'
                        WHEN F1.n % 5 = 0 THEN 'Fizz'
                        ELSE CONVERT(varchar(8), F1.n)
                    END
        ) AS F2
    ) AS Million
    OPTION  (MAXDOP 4, QUERYTRACEON 9481);
    
    PRINT DATEDIFF(MILLISECOND, @start, SYSUTCDATETIME());
    
    • 15
  2. JNK
    2014-12-31T13:18:27+08:002014-12-31T13:18:27+08:00

    Este funciona da mesma forma na minha máquina que o seu primeiro (0ms). Não tenho certeza se escalaria mais rápido ou não.

    ;WITH t AS (
        SELECT RowNum = ROW_NUMBER() OVER (ORDER BY o.object_id)
        FROM sys.objects o
    )
    SELECT t.RowNum
        , Cxa.Fizz + CxB.Buzz
    FROM t
    CROSS APPLY (SELECT CASE WHEN t.RowNum % 3 = 0 THEN 'FIZZ' ELSE '' END) CxA(Fizz)
    CROSS APPLY (SELECT CASE WHEN t.RowNum % 5 = 0 THEN 'BUZZ' ELSE '' END) CxB(Buzz)
    WHERE t.RowNum < 50;
    
    • 11
  3. Robert L Davis
    2014-12-31T14:52:53+08:002014-12-31T14:52:53+08:00

    A melhor versão que criei é executada em 30 ms na minha máquina:

    WITH t AS (
        SELECT 1 As RowNum
        Union ALL
        Select RowNum + 1
        From t
        Where RowNum < 49
    )
    SELECT t.RowNum
    , SubString('FIZZ', (t.RowNum % 3)*10, 5) + SubString('BUZZ', (t.RowNum % 5)*10, 5)
    FROM t;
    
    • 10
  4. user55859
    2015-01-01T00:35:44+08:002015-01-01T00:35:44+08:00

    De acordo com sqlfiddle.com, isso leva 7 ms:

    select coalesce(fizz + buzz, fizz, buzz, cast(n as varchar)) as FizzBuzz
      from (
        select n0 + 3 * n3 + 9 * n9 + 27 * n27 + 81 * n81 as n
            from
                (select 0 as n0  union all select 1 union all select 2 as n0)  as n0,
                (select 0 as n3  union all select 1 union all select 2 as n3)  as n3,
                (select 0 as n9  union all select 1 union all select 2 as n9)  as n9,
                (select 0 as n27 union all select 1 union all select 2 as n27) as n27,
                (select 0 as n81 union all select 1                    as n81) as n81
      ) as stupidalias1
      left outer join
        (select 3 as fizzstep, 'Fizz' as fizz) as stupidalias2 on n % fizzstep = 0
      left outer join
        (select 5 as buzzstep, 'Buzz' as buzz) as stupidalias3 on n % buzzstep = 0
      where n between 1 and 100
      order by n;
    

    Não usa tabelas, procedimentos armazenados ou CTEs.

    • 6
  5. wBob
    2015-01-04T04:16:09+08:002015-01-04T04:16:09+08:00

    Eu tenho uma versão razoável do procedimento armazenado compilado nativamente trabalhando para 1 milhão de linhas em ~ 500-800ms. Esta é uma conversão T-SQL que fiz do algoritmo bit a bit daqui com uma pequena ajuda do blog de Adam Machanic sobre operações bit a bit aqui .

    Estou (espero) seguindo as mesmas regras do procedimento de 500ms / 1 milhão de linhas de @PaulWhite, ou seja, gerando os resultados, mas não os exibindo / não os passando como parte do tempo. Deve haver índices de hash nas tabelas na memória para velocidade e tamanhos de balde de 4.194.304 ou 8.388.608 pareceram ser o ponto ideal para mim, embora obviamente isso forneça altas contagens de baldes vazios.

    USE hekatondb
    GO
    
    --NB: SQLCMD script, Enable via: Query menu > SQLCMD Mode
    :setvar bucketCount 4194304
    --:setvar bucketCount 8388608
    
    IF OBJECT_ID('dbo.usp_hekatonFizzBuzz') IS NOT NULL
    DROP PROC dbo.usp_hekatonFizzBuzz 
    GO
    IF OBJECT_ID('dbo.FizzBuzz') IS NOT NULL
    DROP TABLE dbo.FizzBuzz
    GO
    
    
    IF OBJECT_ID('dbo.FizzBuzz') IS NULL
    CREATE TABLE dbo.FizzBuzz (
        Number      INT NOT NULL,
        Result      VARCHAR(8) NULL,
    
        CONSTRAINT PK_FizzBuzz PRIMARY KEY NONCLUSTERED HASH ( Number ) WITH ( BUCKET_COUNT = $(bucketCount) )
    
    ) WITH ( MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_ONLY )
    GO
    
    
    CREATE PROC dbo.usp_hekatonFizzBuzz 
    
        @limit  INT
    
    WITH
        NATIVE_COMPILATION, 
        SCHEMABINDING, 
        EXECUTE AS OWNER
    AS
    BEGIN ATOMIC
    WITH
    (
        TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
        LANGUAGE = N'english'
    )   
    
        DECLARE @acc INT = 810092048    -- 11 00 00 01 00 10 01 00 00 01 10 00 01 00 00
        DECLARE @i INT = 1
        DECLARE @c INT
    
        WHILE @i <= @limit
        BEGIN 
    
            SELECT
                @c = @acc & 3,
                @acc = ( @acc / 4 ) | ( @c * 268435456 )
    
            INSERT dbo.FizzBuzz ( Number, Result )
            SELECT @i, SUBSTRING( '       Fizz    Buzz    FizzBuzz', @c * 8, @c * 4 )
    
            SET @i += 1
    
        END
    
    END
    GO
    
    DELETE dbo.FizzBuzz
    DECLARE @startDate DATETIME2 = SYSUTCDATETIME();
    
    EXEC dbo.usp_hekatonFizzBuzz 1000000
    
    SELECT DATEDIFF( millisecond, @startDate, SYSUTCDATETIME() ) diff
    GO 10
    
    • 6
  6. James Anderson
    2015-01-01T01:30:16+08:002015-01-01T01:30:16+08:00

    Eu encontrei e joguei com este único sub select sem CTE. max_elapsed_time nas estatísticas de consulta mostra 1036

     SELECT num,
            CASE    WHEN mod3 + mod5 = 0 THEN 'FizzBuzz'
                    WHEN mod5 = 0 THEN 'Buzz'
                    WHEN mod3 = 0 THEN 'Fizz'
                    ELSE CONVERT(VARCHAR(8), num)
            END
     FROM 
     (
        SELECT  number as num,
                number % 3 AS mod3,
                number % 5 AS mod5
        FROM    master.dbo.spt_values
        WHERE   name IS NULL
                AND number BETWEEN 1 AND 101
     ) AS numbers;
    
    • 5
  7. Erik Darling
    2015-01-01T18:41:02+08:002015-01-01T18:41:02+08:00

    Não tomo crédito pelo código como está escrito, só queria ver quanto tempo levaria

    UM BILHÃO DE LINHAS!

    ;WITH T(N) AS (SELECT N FROM (VALUES (NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL)) AS X(N))
        ,NUMS(N) AS (SELECT TOP(1000000000) ROW_NUMBER() OVER (ORDER BY (SELECT NULL))  AS N FROM T T1,T T2,T T3,T T4,T T5,T T6,T T7,T T8,T T9, T T10)
        SELECT  n, ca.fb
        INTO #fizzywizzy
        FROM    NUMS n
                CROSS APPLY ( SELECT    CASE WHEN n.N % 15 = 0 THEN 'FizzBuzz'
                                             WHEN n.N % 3 = 0 THEN 'Fizz'
                                             WHEN n.N % 5 = 0 THEN 'Buzz'
                                             ELSE CAST(n AS VARCHAR)
                                        END AS [fb]
                            ) ca
    

    A resposta é: cerca de 10 minutos.

    SQL Server parse and compile time: 
       CPU time = 13 ms, elapsed time = 13 ms.
    
     SQL Server Execution Times:
       CPU time = 648625 ms,  elapsed time = 618025 ms.
    
    • 3
  8. Best Answer
    Joe Obbish
    2019-06-04T17:37:24+08:002019-06-04T17:37:24+08:00

    Below is a T-SQL solution that writes the first million numbers to a temp table. It takes about 84 ms on my machine. The key bottlenecks are waiting on the NESTING_TRANSACTION_FULL latch and CXPACKET, both of which I don't know how to address other than changing MAXDOP. I wanted a query plan that can take advantage of parallel nested loops and demand based parallelism, which is what I managed to get:

    enter image description here

    The code is a bit long. In short, I join together two derived tables of 246 rows and 271 rows for a total of 66666 rows. Those rows are joined to a 15 row derived table which takes advantage of the fact that the FIZZBUZZ pattern is repeated for every 15 rows. The final ten rows are added in with a UNION ALL.

    DROP TABLE IF EXISTS #t;
    
    SELECT res.fizzbuzz INTO #t
    FROM
    (
    VALUES
    (0),
    (15),
    (30),
    (45),
    (60),
    (75),
    (90),
    (105),
    (120),
    (135),
    (150),
    (165),
    (180),
    (195),
    (210),
    (225),
    (240),
    (255),
    (270),
    (285),
    (300),
    (315),
    (330),
    (345),
    (360),
    (375),
    (390),
    (405),
    (420),
    (435),
    (450),
    (465),
    (480),
    (495),
    (510),
    (525),
    (540),
    (555),
    (570),
    (585),
    (600),
    (615),
    (630),
    (645),
    (660),
    (675),
    (690),
    (705),
    (720),
    (735),
    (750),
    (765),
    (780),
    (795),
    (810),
    (825),
    (840),
    (855),
    (870),
    (885),
    (900),
    (915),
    (930),
    (945),
    (960),
    (975),
    (990),
    (1005),
    (1020),
    (1035),
    (1050),
    (1065),
    (1080),
    (1095),
    (1110),
    (1125),
    (1140),
    (1155),
    (1170),
    (1185),
    (1200),
    (1215),
    (1230),
    (1245),
    (1260),
    (1275),
    (1290),
    (1305),
    (1320),
    (1335),
    (1350),
    (1365),
    (1380),
    (1395),
    (1410),
    (1425),
    (1440),
    (1455),
    (1470),
    (1485),
    (1500),
    (1515),
    (1530),
    (1545),
    (1560),
    (1575),
    (1590),
    (1605),
    (1620),
    (1635),
    (1650),
    (1665),
    (1680),
    (1695),
    (1710),
    (1725),
    (1740),
    (1755),
    (1770),
    (1785),
    (1800),
    (1815),
    (1830),
    (1845),
    (1860),
    (1875),
    (1890),
    (1905),
    (1920),
    (1935),
    (1950),
    (1965),
    (1980),
    (1995),
    (2010),
    (2025),
    (2040),
    (2055),
    (2070),
    (2085),
    (2100),
    (2115),
    (2130),
    (2145),
    (2160),
    (2175),
    (2190),
    (2205),
    (2220),
    (2235),
    (2250),
    (2265),
    (2280),
    (2295),
    (2310),
    (2325),
    (2340),
    (2355),
    (2370),
    (2385),
    (2400),
    (2415),
    (2430),
    (2445),
    (2460),
    (2475),
    (2490),
    (2505),
    (2520),
    (2535),
    (2550),
    (2565),
    (2580),
    (2595),
    (2610),
    (2625),
    (2640),
    (2655),
    (2670),
    (2685),
    (2700),
    (2715),
    (2730),
    (2745),
    (2760),
    (2775),
    (2790),
    (2805),
    (2820),
    (2835),
    (2850),
    (2865),
    (2880),
    (2895),
    (2910),
    (2925),
    (2940),
    (2955),
    (2970),
    (2985),
    (3000),
    (3015),
    (3030),
    (3045),
    (3060),
    (3075),
    (3090),
    (3105),
    (3120),
    (3135),
    (3150),
    (3165),
    (3180),
    (3195),
    (3210),
    (3225),
    (3240),
    (3255),
    (3270),
    (3285),
    (3300),
    (3315),
    (3330),
    (3345),
    (3360),
    (3375),
    (3390),
    (3405),
    (3420),
    (3435),
    (3450),
    (3465),
    (3480),
    (3495),
    (3510),
    (3525),
    (3540),
    (3555),
    (3570),
    (3585),
    (3600),
    (3615),
    (3630),
    (3645),
    (3660),
    (3675)
    ) v246 (n)
    CROSS JOIN 
    (
    VALUES
    (0),
    (15),
    (30),
    (45),
    (60),
    (75),
    (90),
    (105),
    (120),
    (135),
    (150),
    (165),
    (180),
    (195),
    (210),
    (225),
    (240),
    (255),
    (270),
    (285),
    (300),
    (315),
    (330),
    (345),
    (360),
    (375),
    (390),
    (405),
    (420),
    (435),
    (450),
    (465),
    (480),
    (495),
    (510),
    (525),
    (540),
    (555),
    (570),
    (585),
    (600),
    (615),
    (630),
    (645),
    (660),
    (675),
    (690),
    (705),
    (720),
    (735),
    (750),
    (765),
    (780),
    (795),
    (810),
    (825),
    (840),
    (855),
    (870),
    (885),
    (900),
    (915),
    (930),
    (945),
    (960),
    (975),
    (990),
    (1005),
    (1020),
    (1035),
    (1050),
    (1065),
    (1080),
    (1095),
    (1110),
    (1125),
    (1140),
    (1155),
    (1170),
    (1185),
    (1200),
    (1215),
    (1230),
    (1245),
    (1260),
    (1275),
    (1290),
    (1305),
    (1320),
    (1335),
    (1350),
    (1365),
    (1380),
    (1395),
    (1410),
    (1425),
    (1440),
    (1455),
    (1470),
    (1485),
    (1500),
    (1515),
    (1530),
    (1545),
    (1560),
    (1575),
    (1590),
    (1605),
    (1620),
    (1635),
    (1650),
    (1665),
    (1680),
    (1695),
    (1710),
    (1725),
    (1740),
    (1755),
    (1770),
    (1785),
    (1800),
    (1815),
    (1830),
    (1845),
    (1860),
    (1875),
    (1890),
    (1905),
    (1920),
    (1935),
    (1950),
    (1965),
    (1980),
    (1995),
    (2010),
    (2025),
    (2040),
    (2055),
    (2070),
    (2085),
    (2100),
    (2115),
    (2130),
    (2145),
    (2160),
    (2175),
    (2190),
    (2205),
    (2220),
    (2235),
    (2250),
    (2265),
    (2280),
    (2295),
    (2310),
    (2325),
    (2340),
    (2355),
    (2370),
    (2385),
    (2400),
    (2415),
    (2430),
    (2445),
    (2460),
    (2475),
    (2490),
    (2505),
    (2520),
    (2535),
    (2550),
    (2565),
    (2580),
    (2595),
    (2610),
    (2625),
    (2640),
    (2655),
    (2670),
    (2685),
    (2700),
    (2715),
    (2730),
    (2745),
    (2760),
    (2775),
    (2790),
    (2805),
    (2820),
    (2835),
    (2850),
    (2865),
    (2880),
    (2895),
    (2910),
    (2925),
    (2940),
    (2955),
    (2970),
    (2985),
    (3000),
    (3015),
    (3030),
    (3045),
    (3060),
    (3075),
    (3090),
    (3105),
    (3120),
    (3135),
    (3150),
    (3165),
    (3180),
    (3195),
    (3210),
    (3225),
    (3240),
    (3255),
    (3270),
    (3285),
    (3300),
    (3315),
    (3330),
    (3345),
    (3360),
    (3375),
    (3390),
    (3405),
    (3420),
    (3435),
    (3450),
    (3465),
    (3480),
    (3495),
    (3510),
    (3525),
    (3540),
    (3555),
    (3570),
    (3585),
    (3600),
    (3615),
    (3630),
    (3645),
    (3660),
    (3675),
    (3690),
    (3705),
    (3720),
    (3735),
    (3750),
    (3765),
    (3780),
    (3795),
    (3810),
    (3825),
    (3840),
    (3855),
    (3870),
    (3885),
    (3900),
    (3915),
    (3930),
    (3945),
    (3960),
    (3975),
    (3990),
    (4005),
    (4020),
    (4035),
    (4050)
    ) v271 (n)
    CROSS APPLY
    (
    VALUES
    (CAST(v246.n * 271 + v271.n + 1 AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 2 AS CHAR(8))),
    (CAST('FIZZ' AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 4 AS CHAR(8))),
    (CAST('BUZZ' AS CHAR(8))),
    (CAST('FIZZ' AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 7 AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 8 AS CHAR(8))),
    (CAST('FIZZ' AS CHAR(8))),
    (CAST('BUZZ' AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 11 AS CHAR(8))),
    (CAST('FIZZ' AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 13 AS CHAR(8))),
    (CAST(v246.n * 271 + v271.n + 14 AS CHAR(8))),
    (CAST('FIZZBUZZ' AS CHAR(8)))
    ) res (fizzbuzz)
    
    UNION ALL
    
    SELECT v.fizzbuzz
    FROM (
    VALUES 
    ('999991'),
    ('999992'),
    ('FIZZ'),
    ('999994'),
    ('BUZZ'),
    ('FIZZ'),
    ('999997'),
    ('999998'),
    ('FIZZ'),
    ('BUZZ')
    ) v (fizzbuzz)
    
    OPTION (MAXDOP 6, NO_PERFORMANCE_SPOOL);
    
    • 3
  9. Evan Carroll
    2018-03-26T12:37:52+08:002018-03-26T12:37:52+08:00

    PostgreSQLName

    PostgreSQL provides generate_series, a Table-Value Function (Set-Returning Function) which makes this substantially simpler. I'm assuming you don't want anything output whatsoever when the number neither 3, nor 5 goes into it.

    SELECT x, str
    FROM generate_series(1,49) AS gs(x)
    CROSS JOIN LATERAL (VALUES (CASE
      WHEN x % 15 =0 THEN 'Fizzbuzz'
      WHEN x % 3  =0 THEN 'Fizz'
      WHEN x % 5  =0 THEN 'Buzz'
    END)) AS c(str)
    WHERE str IS NOT NULL;
    
    • -2

relate perguntas

  • SQL Server - Como as páginas de dados são armazenadas ao usar um índice clusterizado

  • Preciso de índices separados para cada tipo de consulta ou um índice de várias colunas funcionará?

  • Quando devo usar uma restrição exclusiva em vez de um índice exclusivo?

  • Quais são as principais causas de deadlocks e podem ser evitadas?

  • Como determinar se um Índice é necessário ou necessário

Sidebar

Stats

  • Perguntas 205573
  • respostas 270741
  • best respostas 135370
  • utilizador 68524
  • Highest score
  • respostas
  • Marko Smith

    conectar ao servidor PostgreSQL: FATAL: nenhuma entrada pg_hba.conf para o host

    • 12 respostas
  • Marko Smith

    Como fazer a saída do sqlplus aparecer em uma linha?

    • 3 respostas
  • Marko Smith

    Selecione qual tem data máxima ou data mais recente

    • 3 respostas
  • Marko Smith

    Como faço para listar todos os esquemas no PostgreSQL?

    • 4 respostas
  • Marko Smith

    Listar todas as colunas de uma tabela especificada

    • 5 respostas
  • Marko Smith

    Como usar o sqlplus para se conectar a um banco de dados Oracle localizado em outro host sem modificar meu próprio tnsnames.ora

    • 4 respostas
  • Marko Smith

    Como você mysqldump tabela (s) específica (s)?

    • 4 respostas
  • Marko Smith

    Listar os privilégios do banco de dados usando o psql

    • 10 respostas
  • Marko Smith

    Como inserir valores em uma tabela de uma consulta de seleção no PostgreSQL?

    • 4 respostas
  • Marko Smith

    Como faço para listar todos os bancos de dados e tabelas usando o psql?

    • 7 respostas
  • Martin Hope
    Jin conectar ao servidor PostgreSQL: FATAL: nenhuma entrada pg_hba.conf para o host 2014-12-02 02:54:58 +0800 CST
  • Martin Hope
    Stéphane Como faço para listar todos os esquemas no PostgreSQL? 2013-04-16 11:19:16 +0800 CST
  • Martin Hope
    Mike Walsh Por que o log de transações continua crescendo ou fica sem espaço? 2012-12-05 18:11:22 +0800 CST
  • Martin Hope
    Stephane Rolland Listar todas as colunas de uma tabela especificada 2012-08-14 04:44:44 +0800 CST
  • Martin Hope
    haxney O MySQL pode realizar consultas razoavelmente em bilhões de linhas? 2012-07-03 11:36:13 +0800 CST
  • Martin Hope
    qazwsx Como posso monitorar o andamento de uma importação de um arquivo .sql grande? 2012-05-03 08:54:41 +0800 CST
  • Martin Hope
    markdorison Como você mysqldump tabela (s) específica (s)? 2011-12-17 12:39:37 +0800 CST
  • Martin Hope
    Jonas Como posso cronometrar consultas SQL usando psql? 2011-06-04 02:22:54 +0800 CST
  • Martin Hope
    Jonas Como inserir valores em uma tabela de uma consulta de seleção no PostgreSQL? 2011-05-28 00:33:05 +0800 CST
  • Martin Hope
    Jonas Como faço para listar todos os bancos de dados e tabelas usando o psql? 2011-02-18 00:45:49 +0800 CST

Hot tag

sql-server mysql postgresql sql-server-2014 sql-server-2016 oracle sql-server-2008 database-design query-performance sql-server-2017

Explore

  • Início
  • Perguntas
    • Recentes
    • Highest score
  • tag
  • help

Footer

AskOverflow.Dev

About Us

  • About Us
  • Contact Us

Legal Stuff

  • Privacy Policy

Language

  • Pt
  • Server
  • Unix

© 2023 AskOverflow.DEV All Rights Reserve